ToXCL: A Unified Framework for Toxic Speech Detection and Explanation
- URL: http://arxiv.org/abs/2403.16685v2
- Date: Mon, 20 May 2024 04:06:00 GMT
- Title: ToXCL: A Unified Framework for Toxic Speech Detection and Explanation
- Authors: Nhat M. Hoang, Xuan Long Do, Duc Anh Do, Duc Anh Vu, Luu Anh Tuan,
- Abstract summary: ToXCL is a unified framework for the detection and explanation of implicit toxic speech.
ToXCL achieves new state-of-the-art effectiveness, and outperforms baselines significantly.
- Score: 3.803993344850168
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The proliferation of online toxic speech is a pertinent problem posing threats to demographic groups. While explicit toxic speech contains offensive lexical signals, implicit one consists of coded or indirect language. Therefore, it is crucial for models not only to detect implicit toxic speech but also to explain its toxicity. This draws a unique need for unified frameworks that can effectively detect and explain implicit toxic speech. Prior works mainly formulated the task of toxic speech detection and explanation as a text generation problem. Nonetheless, models trained using this strategy can be prone to suffer from the consequent error propagation problem. Moreover, our experiments reveal that the detection results of such models are much lower than those that focus only on the detection task. To bridge these gaps, we introduce ToXCL, a unified framework for the detection and explanation of implicit toxic speech. Our model consists of three modules: a (i) Target Group Generator to generate the targeted demographic group(s) of a given post; an (ii) Encoder-Decoder Model in which the encoder focuses on detecting implicit toxic speech and is boosted by a (iii) Teacher Classifier via knowledge distillation, and the decoder generates the necessary explanation. ToXCL achieves new state-of-the-art effectiveness, and outperforms baselines significantly.
Related papers
- DPP-Based Adversarial Prompt Searching for Lanugage Models [56.73828162194457]
Auto-regressive Selective Replacement Ascent (ASRA) is a discrete optimization algorithm that selects prompts based on both quality and similarity with determinantal point process (DPP)
Experimental results on six different pre-trained language models demonstrate the efficacy of ASRA for eliciting toxic content.
arXiv Detail & Related papers (2024-03-01T05:28:06Z) - Fine-Grained Detoxification via Instance-Level Prefixes for Large
Language Models [26.474136481185724]
Fine-grained detoxification via instance-level prefixes (FGDILP) to mitigate toxic text without additional cost.
FGDILP contrasts the contextualized representation in attention space using a positive prefix-prepended prompt.
We validate that FGDILP enables controlled text generation with regard to toxicity at both the utterance and context levels.
arXiv Detail & Related papers (2024-02-23T09:04:48Z) - Unveiling the Implicit Toxicity in Large Language Models [77.90933074675543]
The open-endedness of large language models (LLMs) combined with their impressive capabilities may lead to new safety issues when being exploited for malicious use.
We show that LLMs can generate diverse implicit toxic outputs that are exceptionally difficult to detect via simply zero-shot prompting.
We propose a reinforcement learning (RL) based attacking method to further induce the implicit toxicity in LLMs.
arXiv Detail & Related papers (2023-11-29T06:42:36Z) - ToxiGen: A Large-Scale Machine-Generated Dataset for Adversarial and
Implicit Hate Speech Detection [33.715318646717385]
ToxiGen is a large-scale dataset of 274k toxic and benign statements about 13 minority groups.
Controlling machine generation in this way allows ToxiGen to cover implicitly toxic text at a larger scale.
We find that 94.5% of toxic examples are labeled as hate speech by human annotators.
arXiv Detail & Related papers (2022-03-17T17:57:56Z) - Leashing the Inner Demons: Self-Detoxification for Language Models [13.576289320208511]
Language models (LMs) can reproduce (or amplify) toxic language seen during training.
We analyze the impact of prompts, decoding strategies and training corpora on the output.
We propose a simple yet effective method for language models to "detoxify" themselves without an additional large corpus or external discriminator.
arXiv Detail & Related papers (2022-03-06T23:55:12Z) - Characterizing the adversarial vulnerability of speech self-supervised
learning [95.03389072594243]
We make the first attempt to investigate the adversarial vulnerability of such paradigm under the attacks from both zero-knowledge adversaries and limited-knowledge adversaries.
The experimental results illustrate that the paradigm proposed by SUPERB is seriously vulnerable to limited-knowledge adversaries.
arXiv Detail & Related papers (2021-11-08T08:44:04Z) - Speech Toxicity Analysis: A New Spoken Language Processing Task [32.297717021285344]
Toxic speech, also known as hate speech, is regarded as one of the crucial issues plaguing online social media today.
We propose a new Spoken Language Processing task of detecting toxicity from spoken speech.
We introduce DeToxy, the first publicly available toxicity annotated dataset for English speech, sourced from various openly available speech databases.
arXiv Detail & Related papers (2021-10-14T17:51:04Z) - Mitigating Biases in Toxic Language Detection through Invariant
Rationalization [70.36701068616367]
biases toward some attributes, including gender, race, and dialect, exist in most training datasets for toxicity detection.
We propose to use invariant rationalization (InvRat), a game-theoretic framework consisting of a rationale generator and a predictor, to rule out the spurious correlation of certain syntactic patterns.
Our method yields lower false positive rate in both lexical and dialectal attributes than previous debiasing methods.
arXiv Detail & Related papers (2021-06-14T08:49:52Z) - Challenges in Automated Debiasing for Toxic Language Detection [81.04406231100323]
Biased associations have been a challenge in the development of classifiers for detecting toxic language.
We investigate recently introduced debiasing methods for text classification datasets and models, as applied to toxic language detection.
Our focus is on lexical (e.g., swear words, slurs, identity mentions) and dialectal markers (specifically African American English)
arXiv Detail & Related papers (2021-01-29T22:03:17Z) - RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language
Models [93.151822563361]
Pretrained neural language models (LMs) are prone to generating racist, sexist, or otherwise toxic language which hinders their safe deployment.
We investigate the extent to which pretrained LMs can be prompted to generate toxic language, and the effectiveness of controllable text generation algorithms at preventing such toxic degeneration.
arXiv Detail & Related papers (2020-09-24T03:17:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.