論文の概要: Assessing the Performance of Deep Learning for Automated Gleason Grading in Prostate Cancer
- arxiv url: http://arxiv.org/abs/2403.16695v1
- Date: Mon, 25 Mar 2024 12:26:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 14:48:50.923051
- Title: Assessing the Performance of Deep Learning for Automated Gleason Grading in Prostate Cancer
- Title(参考訳): 前立腺癌における自動グリーソングレーディングのためのディープラーニングの性能評価
- Authors: Dominik Müller, Philip Meyer, Lukas Rentschler, Robin Manz, Daniel Hieber, Jonas Bäcker, Samantha Cramer, Christoph Wengenmayr, Bruno Märkl, Ralf Huss, Frank Kramer, Iñaki Soto-Rey, Johannes Raffler,
- Abstract要約: 本研究は前立腺癌におけるGleason gradingの自動化のための11のディープニューラルネットワークアーキテクチャの可能性について検討した。
AUCMEDIフレームワークに基づく標準化された画像分類パイプラインは、堅牢な評価を容易にする。
より新しいアーキテクチャは、密接に関連するGleasonグレードの差別化の難しさにもかかわらず、優れたパフォーマンスを実現した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prostate cancer is a dominant health concern calling for advanced diagnostic tools. Utilizing digital pathology and artificial intelligence, this study explores the potential of 11 deep neural network architectures for automated Gleason grading in prostate carcinoma focusing on comparing traditional and recent architectures. A standardized image classification pipeline, based on the AUCMEDI framework, facilitated robust evaluation using an in-house dataset consisting of 34,264 annotated tissue tiles. The results indicated varying sensitivity across architectures, with ConvNeXt demonstrating the strongest performance. Notably, newer architectures achieved superior performance, even though with challenges in differentiating closely related Gleason grades. The ConvNeXt model was capable of learning a balance between complexity and generalizability. Overall, this study lays the groundwork for enhanced Gleason grading systems, potentially improving diagnostic efficiency for prostate cancer.
- Abstract(参考訳): 前立腺がんは、先進的な診断ツールを求める主要な健康上の問題である。
本研究は, デジタル病理学と人工知能を用いて, 前立腺癌におけるGleason gradingの自動化のための11のディープニューラルネットワークアーキテクチャの可能性について検討した。
AUCMEDIフレームワークに基づく標準化された画像分類パイプラインは,34,264個のアノテートされた組織タイルからなる社内データセットを用いて,ロバストな評価を容易にする。
その結果、アーキテクチャ間で異なる感度を示し、ConvNeXtは最大のパフォーマンスを示した。
特に、より新しいアーキテクチャは、密接に関連するGleasonグレードを区別することの難しさにもかかわらず、優れたパフォーマンスを実現した。
ConvNeXtモデルは複雑さと一般化可能性のバランスを学ぶことができた。
本研究は、Gleason grading system の強化の基礎となり、前立腺癌の診断効率を向上させる可能性がある。
関連論文リスト
- Pathologist-like explainable AI for interpretable Gleason grading in prostate cancer [3.7226270582597656]
我々は,54人の病理学者からなる国際グループによって注釈された1015個の組織マイクロアレイコア画像の新たなデータセットを紹介した。
これらのアノテーションは、国際ガイドラインに従ってグリーソン格付けを行うための詳細な局所的なパターン記述を提供する。
我々は、病理学者の用語を利用した予測を提供するU-Netアーキテクチャに基づく、本質的に説明可能なAIシステムを開発する。
論文 参考訳(メタデータ) (2024-10-19T06:58:26Z) - Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
本稿では,多様なERUSシナリオをカバーする最初のベンチマークデータセットを収集し,注釈付けする。
ERUS-10Kデータセットは77の動画と10,000の高解像度アノテートフレームで構成されています。
本稿では,ASTR (Adaptive Sparse-context TRansformer) という大腸癌セグメンテーションのベンチマークモデルを提案する。
論文 参考訳(メタデータ) (2024-08-19T15:04:42Z) - DeepGleason: a System for Automated Gleason Grading of Prostate Cancer using Deep Neural Networks [0.0]
DeepGleasonはオープンソースのディープニューラルネットワークベースの画像分類システムで、Gleasonの自動グレーティングを行う。
マクロ平均F1スコアは0.806、AUCは0.991、精度は0.974である。
我々のツールは、研究コミュニティにおけるAIベースのGleasonグレーディングの普及に寄与します。
論文 参考訳(メタデータ) (2024-03-25T12:15:42Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
カナダでは、前立腺がんは男性でもっとも一般的ながんであり、2022年のこの人口統計では、新しいがん症例の20%を占めている。
拡散強調画像(DWI)データを用いた前立腺癌診断,予後,治療計画のためのディープニューラルネットワークの開発には大きな関心が寄せられている。
本研究では,解剖学的条件制御型潜伏拡散戦略の導入により,現実的な前立腺DWIデータを生成するための潜伏拡散の有効性について検討した。
論文 参考訳(メタデータ) (2023-11-30T15:11:03Z) - CoNIC Challenge: Pushing the Frontiers of Nuclear Detection,
Segmentation, Classification and Counting [46.45578907156356]
我々は、核分裂と細胞組成を評価するために、その種の最大の利用可能なデータセットを用いて、コミュニティ全体の課題をセットアップする。
大腸組織1,658枚の全スライディング画像を用いて,トップパフォーマンスモデルに基づく広範囲な組織解析を行った。
腫瘍微小環境において,核および好酸球が重要な役割を担っていることが示唆された。
論文 参考訳(メタデータ) (2023-03-11T01:21:13Z) - OncoPetNet: A Deep Learning based AI system for mitotic figure counting
on H&E stained whole slide digital images in a large veterinary diagnostic
lab setting [47.38796928990688]
OncoPetNetの開発において,複数の最先端ディープラーニング技術を用いて病理組織像分類と有糸体像検出を行った。
提案システムは,14種類の癌に対して,ヒトのエキスパートベースラインと比較して,41例の有糸分裂計数性能を有意に向上させた。
デプロイでは、2つのセンターで1日3,323枚のデジタル全スライド画像を処理する高スループット獣医診断サービスにおいて、効果的な0.27分/スライダー推論が達成された。
論文 参考訳(メタデータ) (2021-08-17T20:01:33Z) - Going Deeper through the Gleason Scoring Scale: An Automatic end-to-end
System for Histology Prostate Grading and Cribriform Pattern Detection [7.929433631399375]
本研究の目的は,前立腺生検の日常的分析において病理医を支援できるディープラーニングベースのシステムを開発することである。
この研究の方法論的コアは、がんパターンの存在を決定できる畳み込みニューラルネットワークに基づくパッチワイズ予測モデルである。
論文 参考訳(メタデータ) (2021-05-21T17:51:53Z) - WeGleNet: A Weakly-Supervised Convolutional Neural Network for the
Semantic Segmentation of Gleason Grades in Prostate Histology Images [1.52819437883813]
本研究では,前立腺組織における局所的ながんパターンを,訓練中のグローバルレベルGleasonスコアのみを用いて検出する深層学習システムを提案する。
検証コホートにおける癌パターンの画素レベルの予測のために,コーエンの2次カッパ(k)を0.67で取得した。
我々は、Gleasonグレードのセマンティックセグメンテーションのためのモデル性能を、テストコホートにおける教師付き最先端アーキテクチャと比較した。
論文 参考訳(メタデータ) (2021-05-21T16:27:16Z) - Automated Prostate Cancer Diagnosis Based on Gleason Grading Using
Convolutional Neural Network [12.161266795282915]
そこで本研究では,前立腺癌(PCa)の完全分類のための畳み込みニューラルネットワーク(CNN)を用いた自動分類法を提案する。
Patch-Based Image Reconstruction (PBIR) と呼ばれるデータ拡張手法が提案され,WSIの高分解能化と多様性の向上が図られた。
対象データセットへの事前学習モデルの適応性を高めるために,分布補正モジュールを開発した。
論文 参考訳(メタデータ) (2020-11-29T06:42:08Z) - Gleason Grading of Histology Prostate Images through Semantic
Segmentation via Residual U-Net [60.145440290349796]
前立腺癌の最終診断は、病理学者による前立腺生検におけるGleasonパターンの視覚的検出に基づいている。
コンピュータ支援診断システムは、組織内のがんのパターンを分類し分類することができる。
この研究の方法論的核心は、がん組織を分節できる残留ブロックで修正された画像分割のためのU-Net畳み込みニューラルネットワークである。
論文 参考訳(メタデータ) (2020-05-22T19:49:10Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
頭頸部腫瘍の早期発見は患者の生存に不可欠である。
ハイパースペクトルイメージング(HSI)は頭頸部腫瘍の非侵襲的検出に用いられる。
HSIに基づく喉頭癌診断のための複数の深層学習手法を提案する。
論文 参考訳(メタデータ) (2020-04-21T17:07:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。