論文の概要: CurbNet: Curb Detection Framework Based on LiDAR Point Cloud Segmentation
- arxiv url: http://arxiv.org/abs/2403.16794v2
- Date: Thu, 30 May 2024 07:53:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 20:35:08.120777
- Title: CurbNet: Curb Detection Framework Based on LiDAR Point Cloud Segmentation
- Title(参考訳): CurbNet: LiDARポイントクラウドセグメンテーションに基づくカーブ検出フレームワーク
- Authors: Guoyang Zhao, Fulong Ma, Weiqing Qi, Yuxuan Liu, Ming Liu,
- Abstract要約: 本稿では,ポイントクラウドセグメンテーションを利用した検出を抑える新しいフレームワークであるCurbNetを紹介する。
我々はセマンティックKITTIをベースとした3D-Curbデータセットを開発した。
xy平面上の凹凸特性の不均一分布と、z軸に沿った高周波特性への依存による課題に対処するため、マルチスケール・チャネルアテンション(MSCA)モジュールを導入する。
- 参考スコア(独自算出の注目度): 7.451629109566809
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Curb detection is a crucial function in intelligent driving, essential for determining drivable areas on the road. However, the complexity of road environments makes curb detection challenging. This paper introduces CurbNet, a novel framework for curb detection utilizing point cloud segmentation. To address the lack of comprehensive curb datasets with 3D annotations, we have developed the 3D-Curb dataset based on SemanticKITTI, currently the largest and most diverse collection of curb point clouds. Recognizing that the primary characteristic of curbs is height variation, our approach leverages spatially rich 3D point clouds for training. To tackle the challenges posed by the uneven distribution of curb features on the xy-plane and their dependence on high-frequency features along the z-axis, we introduce the Multi-Scale and Channel Attention (MSCA) module, a customized solution designed to optimize detection performance. Additionally, we propose an adaptive weighted loss function group specifically formulated to counteract the imbalance in the distribution of curb point clouds relative to other categories. Extensive experiments conducted on 2 major datasets demonstrate that our method surpasses existing benchmarks set by leading curb detection and point cloud segmentation models. Through the post-processing refinement of the detection results, we have significantly reduced noise in curb detection, thereby improving precision by 4.5 points. Similarly, our tolerance experiments also achieved state-of-the-art results. Furthermore, real-world experiments and dataset analyses mutually validate each other, reinforcing CurbNet's superior detection capability and robust generalizability. The project website is available at: https://github.com/guoyangzhao/CurbNet/.
- Abstract(参考訳): カーブ検出は知的運転において重要な機能であり、道路上の乾燥可能な地域を決定するのに不可欠である。
しかし,道路環境の複雑化が抑制検出を困難にしている。
本稿では,ポイントクラウドセグメンテーションを利用した検出を抑える新しいフレームワークであるCurbNetを紹介する。
3Dアノテーションによる包括的なストレッチデータセットの欠如に対処するため,現在最大かつ最も多様なストレッチポイントクラウドであるSemanticKITTIに基づく3D-Curbデータセットを開発した。
縁石の主特性が高さ変化であることを認識し, 空間的にリッチな3次元点雲をトレーニングに活用する。
我々は,xy平面上の凹凸特性の不均一分布と,z軸に沿った高周波特性への依存による課題に対処するため,検出性能の最適化を目的としたマルチスケール・チャネルアテンション(MSCA)モジュールを提案する。
さらに, 適応重み付き損失関数群は, 他のカテゴリと比較して, ストレッチ点雲の分布の不均衡に対処するために特別に定式化された。
2つの主要なデータセットで実施された大規模な実験により,本手法はストレッチ検出とポイントクラウドセグメンテーションモデルによって設定された既存のベンチマークを上回っていることが示された。
検出結果の処理後改良により, ストレッチ検出におけるノイズを著しく低減し, 4.5点の精度向上を実現した。
同様に、我々の耐久実験は最先端の結果も達成した。
さらに、実世界の実験とデータセット分析は相互に検証し、CurbNetの優れた検出能力と堅牢な一般化性を補強する。
プロジェクトのWebサイトは、https://github.com/guoyangzhao/CurbNet/.comで公開されている。
関連論文リスト
- Annotation-Free Curb Detection Leveraging Altitude Difference Image [9.799565515089617]
自動運転車の安全性を確保するためには、道路封鎖が不可欠である。
縁石検出の現在の方法は、カメラ画像やLiDAR点雲に依存している。
本研究は,ADI(Altitude Difference Image)を利用したアノテーションのないストレッチ検出手法を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:29:41Z) - FASTC: A Fast Attentional Framework for Semantic Traversability Classification Using Point Cloud [7.711666704468952]
点雲を用いたトラバーサビリティ評価の問題に対処する。
本稿では,垂直に配置された点雲から特徴を捉えるために PointNet を利用した柱状特徴抽出モジュールを提案する。
次に、LIDAR点雲の密度問題に適切に対応できる多フレーム情報を融合する新しい時間的アテンションモジュールを提案する。
論文 参考訳(メタデータ) (2024-06-24T12:01:55Z) - Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
本稿では,ポイントクラウド分析のためのクラスタリングに基づく教師付き学習手法を提案する。
現在のデファクトでシーンワイドなトレーニングパラダイムとは異なり、我々のアルゴリズムは点埋め込み空間上でクラス内のクラスタリングを行う。
我々のアルゴリズムは、有名なポイントクラウドセグメンテーションデータセットの顕著な改善を示している。
論文 参考訳(メタデータ) (2023-07-27T03:42:12Z) - A Unified BEV Model for Joint Learning of 3D Local Features and Overlap
Estimation [12.499361832561634]
本稿では,3次元局所特徴の同時学習と重なり推定のための統合鳥眼ビュー(BEV)モデルを提案する。
提案手法は,特に重複の少ないシーンにおいて,重複予測における既存手法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-28T12:01:16Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - Dual Adaptive Transformations for Weakly Supervised Point Cloud
Segmentation [78.6612285236938]
弱制御点雲分割のための新しいDATモデル(textbfDual textbfAdaptive textbfTransformations)を提案する。
我々は,大規模S3DISデータセットとScanNet-V2データセットの2つの人気バックボーンを用いたDATモデルの評価を行った。
論文 参考訳(メタデータ) (2022-07-19T05:43:14Z) - Structure Aware and Class Balanced 3D Object Detection on nuScenes
Dataset [0.0]
NuTonomyのnuScenesデータセットは、KITTIのような一般的なデータセットを大きく拡張している。
このモデルの局所化精度は、ダウンスケールされた特徴写像における空間情報の損失に影響される。
本稿では,3次元点雲の構造情報をフル活用した補助ネットワークを設計することで,CBGSモデルの性能を向上させることを提案する。
論文 参考訳(メタデータ) (2022-05-25T06:18:49Z) - IDEA-Net: Dynamic 3D Point Cloud Interpolation via Deep Embedding
Alignment [58.8330387551499]
我々は、点方向軌跡(すなわち滑らかな曲線)の推定として問題を定式化する。
本稿では,学習した時間的一貫性の助けを借りて問題を解消する,エンドツーエンドのディープラーニングフレームワークであるIDEA-Netを提案する。
各種点群における本手法の有効性を実証し, 定量的かつ視覚的に, 最先端の手法に対する大幅な改善を観察する。
論文 参考訳(メタデータ) (2022-03-22T10:14:08Z) - 3D Object Detection Combining Semantic and Geometric Features from Point
Clouds [19.127930862527666]
そこで本研究では,SGNetと呼ばれる2次元物体検出装置を提案する。
VTPMはVoxel-Point-Based Moduleであり、最終的に点空間で3Dオブジェクト検出を実装している。
2021年9月19日時点で、KITTIデータセットでは、SGNetは、難易度の高いサイクリストの3DおよびBEV検出で1位、適度なサイクリストの3D検出では2位であった。
論文 参考訳(メタデータ) (2021-10-10T04:43:27Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
我々はRandLA-Netを紹介した。RandLA-Netは、大規模ポイントクラウドのポイントごとの意味を推論する、効率的で軽量なニューラルネットワークアーキテクチャである。
我々のアプローチの鍵は、より複雑な点選択アプローチではなく、ランダムな点サンプリングを使用することである。
我々のRandLA-Netは、既存のアプローチよりも最大200倍高速な1回のパスで100万ポイントを処理できます。
論文 参考訳(メタデータ) (2021-07-06T05:08:34Z) - InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic
Information Modeling [65.47126868838836]
動的情報モデリングを用いた新しい3次元オブジェクト検出フレームワークを提案する。
粗い予測は、ボクセルベースの領域提案ネットワークを介して第1段階で生成される。
大規模なnuScenes 3D検出ベンチマークで実験を行った。
論文 参考訳(メタデータ) (2020-07-16T18:27:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。