High-Temperature Gibbs States are Unentangled and Efficiently Preparable
- URL: http://arxiv.org/abs/2403.16850v1
- Date: Mon, 25 Mar 2024 15:11:26 GMT
- Title: High-Temperature Gibbs States are Unentangled and Efficiently Preparable
- Authors: Ainesh Bakshi, Allen Liu, Ankur Moitra, Ewin Tang,
- Abstract summary: We show that thermal states of local Hamiltonians are separable above a constant temperature.
This sudden death of thermal entanglement upends conventional wisdom about the presence of short-range quantum correlations in Gibbs states.
- Score: 22.397920564324973
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show that thermal states of local Hamiltonians are separable above a constant temperature. Specifically, for a local Hamiltonian $H$ on a graph with degree $\mathfrak{d}$, its Gibbs state at inverse temperature $\beta$, denoted by $\rho =e^{-\beta H}/ \textrm{tr}(e^{-\beta H})$, is a classical distribution over product states for all $\beta < 1/(c\mathfrak{d})$, where $c$ is a constant. This sudden death of thermal entanglement upends conventional wisdom about the presence of short-range quantum correlations in Gibbs states. Moreover, we show that we can efficiently sample from the distribution over product states. In particular, for any $\beta < 1/( c \mathfrak{d}^3)$, we can prepare a state $\epsilon$-close to $\rho$ in trace distance with a depth-one quantum circuit and $\textrm{poly}(n) \log(1/\epsilon)$ classical overhead. A priori the task of preparing a Gibbs state is a natural candidate for achieving super-polynomial quantum speedups, but our results rule out this possibility above a fixed constant temperature.
Related papers
- Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.
This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.
Even with sublinear barriers, we use Feynman-Kac techniques to lift classical to quantum ones establishing tight lower bound $T_mathrmmix = 2Omega(nalpha)$.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - On stability of k-local quantum phases of matter [0.4999814847776097]
We analyze the stability of the energy gap to Euclids for Hamiltonians corresponding to general quantum low-density parity-check codes.
We discuss implications for the third law of thermodynamics, as $k$-local Hamiltonians can have extensive zero-temperature entropy.
arXiv Detail & Related papers (2024-05-29T18:00:20Z) - Hamiltonian simulation for low-energy states with optimal time dependence [45.02537589779136]
We consider the task of simulating time evolution under a Hamiltonian $H$ within its low-energy subspace.
We present a quantum algorithm that uses $O(tsqrtlambdaGamma + sqrtlambda/Gammalog (1/epsilon))$ queries to the block-encoding for any $Gamma$.
arXiv Detail & Related papers (2024-04-04T17:58:01Z) - Dimension Independent Disentanglers from Unentanglement and Applications [55.86191108738564]
We construct a dimension-independent k-partite disentangler (like) channel from bipartite unentangled input.
We show that to capture NEXP, it suffices to have unentangled proofs of the form $| psi rangle = sqrta | sqrt1-a | psi_+ rangle where $| psi_+ rangle has non-negative amplitudes.
arXiv Detail & Related papers (2024-02-23T12:22:03Z) - Thermalization of closed chaotic many-body quantum systems [0.0]
We investigate thermalization of a chaotic many-body quantum system by combining the Hartree-Fock approach and the Bohigas-Giannoni-Schmit conjecture.
We show that in the semiclassical regime, $rm Tr (A rho(t))$ decays with time scale $hbar / Delta$ towards an equilibrium value.
arXiv Detail & Related papers (2023-10-04T11:16:35Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Detection of Dense Subhypergraphs by Low-Degree Polynomials [72.4451045270967]
Detection of a planted dense subgraph in a random graph is a fundamental statistical and computational problem.
We consider detecting the presence of a planted $Gr(ngamma, n-alpha)$ subhypergraph in a $Gr(n, n-beta) hypergraph.
Our results are already new in the graph case $r=2$, as we consider the subtle log-density regime where hardness based on average-case reductions is not known.
arXiv Detail & Related papers (2023-04-17T10:38:08Z) - Local Max-Entropy and Free Energy Principles Solved by Belief
Propagation [0.0]
A statistical system is classically defined on a set of microstates $E$ by a global energy function $H : E to mathbbR$, yielding Gibbs probability measures $rhobeta(H)$ for every inverse temperature $beta = T-1$.
We show that the generalized belief propagation algorithm solves a collection of local variational principles, by converging to critical points of Bethe-Kikuchi approximations of the free energy $F(beta)$, the Shannon entropy $S(cal U)$, and the variational free energy
arXiv Detail & Related papers (2022-07-02T14:20:40Z) - On the Self-Penalization Phenomenon in Feature Selection [69.16452769334367]
We describe an implicit sparsity-inducing mechanism based on over a family of kernels.
As an application, we use this sparsity-inducing mechanism to build algorithms consistent for feature selection.
arXiv Detail & Related papers (2021-10-12T09:36:41Z) - Statistical properties of the localization measure of chaotic
eigenstates and the spectral statistics in a mixed-type billiard [0.0]
We study the quantum localization in the chaotic eigenstates of a billiard with mixed-type phase space.
We show that the level repulsion exponent $beta$ is empirically a rational function of $alpha$, and the mean $langle A rangle$ as a function of $alpha$ is also well approximated by a rational function.
arXiv Detail & Related papers (2021-04-23T15:33:26Z) - Time-inhomogeneous Quantum Markov Chains with Decoherence on Finite
State Spaces [0.2538209532048866]
We study time-inhomogeneous quantum Markov chains with parameter $zeta ge 0$ and decoherence parameter $0 leq p leq 1$ on finite spaces.
arXiv Detail & Related papers (2020-12-10T04:23:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.