On stability of k-local quantum phases of matter
- URL: http://arxiv.org/abs/2405.19412v2
- Date: Sat, 7 Sep 2024 18:14:14 GMT
- Title: On stability of k-local quantum phases of matter
- Authors: Ali Lavasani, Michael J. Gullans, Victor V. Albert, Maissam Barkeshli,
- Abstract summary: We analyze the stability of the energy gap to Euclids for Hamiltonians corresponding to general quantum low-density parity-check codes.
We discuss implications for the third law of thermodynamics, as $k$-local Hamiltonians can have extensive zero-temperature entropy.
- Score: 0.4999814847776097
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The current theoretical framework for topological phases of matter is based on the thermodynamic limit of a system with geometrically local interactions. A natural question is to what extent the notion of a phase of matter remains well-defined if we relax the constraint of geometric locality, and replace it with a weaker graph-theoretic notion of $k$-locality. As a step towards answering this question, we analyze the stability of the energy gap to perturbations for Hamiltonians corresponding to general quantum low-density parity-check codes, extending work of Bravyi and Hastings [Commun. Math. Phys. 307, 609 (2011)]. A corollary of our main result is that if there exist constants $\varepsilon_1,\varepsilon_2>0$ such that the size $\Gamma(r)$ of balls of radius $r$ on the interaction graph satisfy $\Gamma(r) = O(\exp(r^{1-\varepsilon_1}))$ and the local ground states of balls of radius $r\le\rho^\ast = O(\log(n)^{1+\varepsilon_2})$ are locally indistinguishable, then the energy gap of the associated Hamiltonian is stable against local perturbations. This gives an almost exponential improvement over the $D$-dimensional Euclidean case, which requires $\Gamma(r) = O(r^D)$ and $\rho^\ast = O(n^\alpha)$ for some $\alpha > 0$. The approach we follow falls just short of proving stability of finite-rate qLDPC codes, which have $\varepsilon_1 = 0$; we discuss some strategies to extend the result to these cases. We discuss implications for the third law of thermodynamics, as $k$-local Hamiltonians can have extensive zero-temperature entropy.
Related papers
- Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.
This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.
Even with sublinear barriers, we use Feynman-Kac techniques to lift classical to quantum ones establishing tight lower bound $T_mathrmmix = 2Omega(nalpha)$.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - LDPC stabilizer codes as gapped quantum phases: stability under graph-local perturbations [0.025206105035672277]
We generalize the proof of stability of topological order, due to Bravyi, Hastings and Michalakis, to Hamiltonians corresponding to low-density parity check codes.
We show that LDPC codes very generally define stable gapped quantum phases, even in the non-Euclidean setting.
arXiv Detail & Related papers (2024-11-04T18:52:44Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Rigorous derivation of the Efimov effect in a simple model [68.8204255655161]
We consider a system of three identical bosons in $mathbbR3$ with two-body zero-range interactions and a three-body hard-core repulsion of a given radius $a>0$.
arXiv Detail & Related papers (2023-06-21T10:11:28Z) - Fast Rates for Maximum Entropy Exploration [52.946307632704645]
We address the challenge of exploration in reinforcement learning (RL) when the agent operates in an unknown environment with sparse or no rewards.
We study the maximum entropy exploration problem two different types.
For visitation entropy, we propose a game-theoretic algorithm that has $widetildemathcalO(H3S2A/varepsilon2)$ sample complexity.
For the trajectory entropy, we propose a simple algorithm that has a sample of complexity of order $widetildemathcalO(mathrmpoly(S,
arXiv Detail & Related papers (2023-03-14T16:51:14Z) - Bounds on Renyi entropy growth in many-body quantum systems [0.0]
We prove rigorous bounds on the growth of $alpha$-Renyi entropies $S_alpha(t)$.
For completely non-local Hamiltonians, we show that the instantaneous growth rates $|S'_alpha(t)|$ can be exponentially larger than $|S'_alpha(t)|$.
arXiv Detail & Related papers (2022-12-14T19:00:01Z) - Relative Entropy for Fermionic Quantum Field Theory [0.0]
We study the relative entropy for a self-dual CAR algebra $mathfrakA_SDC(mathcalH,Gamma)$.
We explicitly compute the relative entropy between a quasifree state over $mathfrakA_SDC(mathcalH,Gamma)$ and an excitation of it.
arXiv Detail & Related papers (2022-10-18T14:24:51Z) - Symmetry-resolved entanglement entropy in critical free-fermion chains [0.0]
symmetry-resolved R'enyi entanglement entropy is known to have rich theoretical connections to conformal field theory.
We consider a class of critical quantum chains with a microscopic U(1) symmetry.
For the density matrix, $rho_A$, of subsystems of $L$ neighbouring sites we calculate the leading terms in the large $L$ expansion of the symmetry-resolved R'enyi entanglement entropies.
arXiv Detail & Related papers (2022-02-23T19:00:03Z) - A Law of Robustness beyond Isoperimetry [84.33752026418045]
We prove a Lipschitzness lower bound $Omega(sqrtn/p)$ of robustness of interpolating neural network parameters on arbitrary distributions.
We then show the potential benefit of overparametrization for smooth data when $n=mathrmpoly(d)$.
We disprove the potential existence of an $O(1)$-Lipschitz robust interpolating function when $n=exp(omega(d))$.
arXiv Detail & Related papers (2022-02-23T16:10:23Z) - R\'{e}nyi and Tsallis entropies of the Dirichlet and Neumann
one-dimensional quantum wells [0.0]
Dirichlet and Neumann boundary conditions (BCs) of 1D quantum well are studied.
For either BC the dependencies of the R'enyi position components on the parameter $alpha$ are the same for all orbitals.
The gap between the thresholds $alpha_TH$ of the two BCs causes different behavior of the R'enyi uncertainty relations as functions of $alpha$.
arXiv Detail & Related papers (2020-03-09T18:34:00Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.