論文の概要: AIOS: LLM Agent Operating System
- arxiv url: http://arxiv.org/abs/2403.16971v2
- Date: Tue, 26 Mar 2024 02:35:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 20:24:47.940830
- Title: AIOS: LLM Agent Operating System
- Title(参考訳): AIOS: LLMエージェントオペレーティングシステム
- Authors: Kai Mei, Zelong Li, Shuyuan Xu, Ruosong Ye, Yingqiang Ge, Yongfeng Zhang,
- Abstract要約: AIOSは、大規模言語モデル(LLM)ベースのインテリジェントエージェントのためのオペレーティングシステムである。
巨大な言語モデルをOSの頭脳としてオペレーティングシステム(OS)に組み込んで、オペレーティングシステムを「魂を持って」可能にする。
- 参考スコア(独自算出の注目度): 40.936621424710935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration and deployment of large language model (LLM)-based intelligent agents have been fraught with challenges that compromise their efficiency and efficacy. Among these issues are sub-optimal scheduling and resource allocation of agent requests over the LLM, the difficulties in maintaining context during interactions between agent and LLM, and the complexities inherent in integrating heterogeneous agents with different capabilities and specializations. The rapid increase of agent quantity and complexity further exacerbates these issues, often leading to bottlenecks and sub-optimal utilization of resources. Inspired by these challenges, this paper presents AIOS, an LLM agent operating system, which embeds large language model into operating systems (OS) as the brain of the OS, enabling an operating system "with soul" -- an important step towards AGI. Specifically, AIOS is designed to optimize resource allocation, facilitate context switch across agents, enable concurrent execution of agents, provide tool service for agents, and maintain access control for agents. We present the architecture of such an operating system, outline the core challenges it aims to resolve, and provide the basic design and implementation of the AIOS. Our experiments on concurrent execution of multiple agents demonstrate the reliability and efficiency of our AIOS modules. Through this, we aim to not only improve the performance and efficiency of LLM agents but also to pioneer for better development and deployment of the AIOS ecosystem in the future. The project is open-source at https://github.com/agiresearch/AIOS.
- Abstract(参考訳): 大規模言語モデル(LLM)ベースのインテリジェントエージェントの統合とデプロイは、その効率性と効率性を損なうような問題に直面している。
これらの課題には、LLM上のエージェント要求のサブ最適スケジューリングとリソース割り当て、エージェントとLLM間の相互作用におけるコンテキスト維持の難しさ、および異なる機能と特殊化を備えた異種エージェントの統合に固有の複雑さが含まれる。
エージェント量と複雑さの急速な増加はこれらの問題をさらに悪化させ、しばしばボトルネックとリソースの準最適利用につながる。
これらの課題に触発された本論文では,OSの頭脳として大規模言語モデルをオペレーティングシステム(OS)に組み込んだLLMエージェントオペレーティングシステムであるAIOSを提案する。
具体的には、AIOSはリソース割り当てを最適化し、エージェント間のコンテキストスイッチを容易にし、エージェントの同時実行を可能にし、エージェントのためのツールサービスを提供し、エージェントのアクセス制御を維持するように設計されている。
我々は、そのようなオペレーティングシステムのアーキテクチャを説明し、AIOSの基本設計と実装を提供する。
複数のエージェントの同時実行に関する実験は、AIOSモジュールの信頼性と効率を実証している。
これにより,LLMエージェントの性能と効率の向上だけでなく,将来的にはAIOSエコシステムのより良い開発と展開のパイオニアも目指す。
プロジェクトはhttps://github.com/agiresearch/AIOSでオープンソース化されている。
関連論文リスト
- Multi-LLM-Agent Systems: Techniques and Business Perspectives [23.899484049367796]
本稿では,マルチLLMエージェントシステム(MLAS)の技術とビジネスの展望について述べる。
従来の単一LLMエージェントシステムと比較して,MLASは,タスク解決性能の高い可能性,システム変更の柔軟性,および,各エンティティに対する収益化の実現可能性を有する。
論文 参考訳(メタデータ) (2024-11-21T11:36:29Z) - Turn Every Application into an Agent: Towards Efficient Human-Agent-Computer Interaction with API-First LLM-Based Agents [40.86728610906313]
AXISは、ユーザインタフェースアクションよりもアプリケーションプログラミングインターフェース(API)を通してアクションを優先順位付けする、LLMベースの新しいエージェントフレームワークである。
Office Wordでの実験では、AXISはタスク完了時間を65%-70%削減し、認知負荷を38%-53%削減し、精度は97%-98%と人間と比較した。
また、すべてのアプリケーションをエージェントに変え、エージェント中心のオペレーティングシステム(Agent OS)への道を開く可能性についても検討している。
論文 参考訳(メタデータ) (2024-09-25T17:58:08Z) - Large Language Models for Base Station Siting: Intelligent Deployment based on Prompt or Agent [62.16747639440893]
大規模言語モデル(LLM)とその関連技術は、特に迅速な工学とエージェント工学の領域において進歩している。
このアプローチは、人間の経験と知識をこれらの洗練されたLLMに注入するために、巧妙なプロンプトの戦略的利用を必要とする。
この統合は、サービスとしての人工知能(AI)と、より容易なAIの将来のパラダイムを表している。
論文 参考訳(メタデータ) (2024-08-07T08:43:32Z) - AgentLite: A Lightweight Library for Building and Advancing
Task-Oriented LLM Agent System [91.41155892086252]
LLMエージェントの研究を簡略化する新しいAIエージェントライブラリであるAgentLiteをオープンソースとして公開する。
AgentLiteは、タスクを分解するエージェントの機能を強化するために設計されたタスク指向フレームワークである。
我々は,その利便性と柔軟性を示すために,AgentLiteで開発された実用アプリケーションを紹介した。
論文 参考訳(メタデータ) (2024-02-23T06:25:20Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScopeは、メッセージ交換をコアコミュニケーションメカニズムとする、開発者中心のマルチエージェントプラットフォームである。
豊富な構文ツール、組み込みエージェントとサービス機能、アプリケーションのデモとユーティリティモニタのためのユーザフレンドリなインターフェース、ゼロコードプログラミングワークステーション、自動プロンプトチューニング機構により、開発とデプロイメントの両方の障壁は大幅に低下した。
論文 参考訳(メタデータ) (2024-02-21T04:11:28Z) - Understanding the Weakness of Large Language Model Agents within a
Complex Android Environment [21.278266207772756]
大規模言語モデル(LLM)は、ブラウザやゲームのようなドメイン固有のソフトウェア内で複雑なタスクを実行するインテリジェントエージェントに権限を与えている。
LLMはオペレーティングシステムのような汎用ソフトウェアシステムに適用する際の3つの主要な課題に直面している。
これらの課題は、現代的なオペレーティングシステム上でLLMエージェントを評価するために設計された環境とベンチマークであるAndroidArenaを動機付けている。
論文 参考訳(メタデータ) (2024-02-09T18:19:25Z) - LLM as OS, Agents as Apps: Envisioning AIOS, Agents and the AIOS-Agent
Ecosystem [48.81136793994758]
大規模言語モデル (LLM) は(人工)知能オペレーティングシステム (IOS) またはAIOS (AIOS) として機能する。
LLMの影響はAIアプリケーションレベルに限らず、コンピュータシステム、アーキテクチャ、ソフトウェア、プログラミング言語の設計と実装に革命をもたらすものと期待している。
論文 参考訳(メタデータ) (2023-12-06T18:50:26Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
大規模言語モデル(LLM)は、従来のNLPタスクを超えた現実的な実用的ミッションをターゲットとして、ますます賢く自律的になってきています。
我々は,現在8つの異なる環境からなるベンチマークであるAgentBenchを紹介し,LLM-as-Agentの推論と意思決定能力を評価する。
論文 参考訳(メタデータ) (2023-08-07T16:08:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。