論文の概要: Self-STORM: Deep Unrolled Self-Supervised Learning for Super-Resolution Microscopy
- arxiv url: http://arxiv.org/abs/2403.16974v1
- Date: Mon, 25 Mar 2024 17:40:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 20:15:04.215868
- Title: Self-STORM: Deep Unrolled Self-Supervised Learning for Super-Resolution Microscopy
- Title(参考訳): 自己-STORM:超解像顕微鏡のための深層アンロール型自己-スーパービジョン学習
- Authors: Yair Ben Sahel, Yonina C. Eldar,
- Abstract要約: 我々は、シーケンス固有のモデルベースのオートエンコーダをトレーニングすることで、そのようなデータの必要性を軽減する、深層無学習の自己教師付き学習を導入する。
提案手法は, 監視対象の性能を超過する。
- 参考スコア(独自算出の注目度): 55.2480439325792
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The use of fluorescent molecules to create long sequences of low-density, diffraction-limited images enables highly-precise molecule localization. However, this methodology requires lengthy imaging times, which limits the ability to view dynamic interactions of live cells on short time scales. Many techniques have been developed to reduce the number of frames needed for localization, from classic iterative optimization to deep neural networks. Particularly, deep algorithm unrolling utilizes both the structure of iterative sparse recovery algorithms and the performance gains of supervised deep learning. However, the robustness of this approach is highly dependant on having sufficient training data. In this paper we introduce deep unrolled self-supervised learning, which alleviates the need for such data by training a sequence-specific, model-based autoencoder that learns only from given measurements. Our proposed method exceeds the performance of its supervised counterparts, thus allowing for robust, dynamic imaging well below the diffraction limit without any labeled training samples. Furthermore, the suggested model-based autoencoder scheme can be utilized to enhance generalization in any sparse recovery framework, without the need for external training data.
- Abstract(参考訳): 蛍光分子を用いて低密度、回折制限画像の長い配列を生成することにより、高精度な分子局在化が可能となる。
しかし、この手法は、短い時間スケールで生きた細胞の動的相互作用を見る能力を制限する、長時間のイメージング時間を必要とする。
古典的な反復最適化からディープニューラルネットワークに至るまで、ローカライズに必要なフレーム数を減らすために多くの技術が開発されている。
特にディープ・アルゴリズム・アンローリングは反復スパース・リカバリ・アルゴリズムの構造と教師付きディープ・ラーニングの性能向上を両立させる。
しかし、このアプローチの堅牢性は十分なトレーニングデータを持つことに大きく依存している。
本稿では、与えられた測定値からのみ学習するシーケンス固有モデルベースオートエンコーダをトレーニングすることにより、そのようなデータの必要性を軽減する、深層無学習型自己教師学習を提案する。
提案手法は, 教師付き撮像装置の性能を超越し, ラベル付きトレーニングサンプルを使わずに, 回折限界以下で頑健でダイナミックな撮像が可能となる。
さらに、モデルベースのオートエンコーダスキームを用いて、任意のスパースリカバリフレームワークの一般化を、外部トレーニングデータを必要とせずに向上させることができる。
関連論文リスト
- Enhancing Fine-Grained Visual Recognition in the Low-Data Regime Through Feature Magnitude Regularization [23.78498670529746]
抽出した特徴量の均等分布を保証するために正規化手法を導入する。
その明らかな単純さにもかかわらず、我々の手法は様々な細粒度視覚認識データセットに対して顕著な性能向上を示した。
論文 参考訳(メタデータ) (2024-09-03T07:32:46Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
SSLとDCのパラダイム間の相互作用に関する新しい視点を提示する。
SSL設定において、スクラッチから高密度かつゲートされたサブネットワークを同時に学習することは可能であることを示す。
密集エンコーダとゲートエンコーダの事前学習における共進化は、良好な精度と効率のトレードオフをもたらす。
論文 参考訳(メタデータ) (2023-01-22T17:12:58Z) - Loop Unrolled Shallow Equilibrium Regularizer (LUSER) -- A
Memory-Efficient Inverse Problem Solver [26.87738024952936]
逆問題では、潜在的に破損し、しばしば不適切な測定結果から、いくつかの基本的な関心のシグナルを再構築することを目的としている。
浅い平衡正規化器(L)を用いたLUアルゴリズムを提案する。
これらの暗黙のモデルは、より深い畳み込みネットワークと同じくらい表現力があるが、トレーニング中にはるかにメモリ効率が良い。
論文 参考訳(メタデータ) (2022-10-10T19:50:37Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - LaplaceNet: A Hybrid Energy-Neural Model for Deep Semi-Supervised
Classification [0.0]
深層半教師付き分類の最近の進歩は、前例のない性能に達している。
モデル複雑性を大幅に低減した深層半教師付き分類のための新しいフレームワークであるLaplaceNetを提案する。
本モデルは,複数のベンチマークデータセットを用いて,半教師付き深層分類のための最先端手法より優れる。
論文 参考訳(メタデータ) (2021-06-08T17:09:28Z) - Unsupervised Monocular Depth Learning with Integrated Intrinsics and
Spatio-Temporal Constraints [61.46323213702369]
本研究は,大規模深度マップとエゴモーションを予測可能な教師なし学習フレームワークを提案する。
本結果は,KITTI運転データセットの複数シーケンスにおける現在の最先端技術と比較して,高い性能を示す。
論文 参考訳(メタデータ) (2020-11-02T22:26:58Z) - Neural Network-based Reconstruction in Compressed Sensing MRI Without
Fully-sampled Training Data [17.415937218905125]
CS-MRIは、アンダーサンプリングされたMR画像の再構成を約束している。
ニューラルネットワークで繰り返しをアンロールすることで、古典的なテクニックの反復性をモデル化するディープラーニングモデルが開発されている。
本稿では,古典的最適化方式で広く用いられている損失関数を応用して,非学習型再構成ネットワークを教師なしで訓練するための新しい戦略について検討する。
論文 参考訳(メタデータ) (2020-07-29T17:46:55Z) - AdaS: Adaptive Scheduling of Stochastic Gradients [50.80697760166045]
我々は、textit "knowledge gain" と textit "mapping condition" の概念を導入し、Adaptive Scheduling (AdaS) と呼ばれる新しいアルゴリズムを提案する。
実験によると、AdaSは派生した指標を用いて、既存の適応学習手法よりも高速な収束と優れた一般化、そして(b)いつトレーニングを中止するかを決定するための検証セットへの依存の欠如を示す。
論文 参考訳(メタデータ) (2020-06-11T16:36:31Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z) - Automated Deep Abstractions for Stochastic Chemical Reaction Networks [0.0]
低レベル化学反応ネットワーク(CRN)モデルは高次元連続時間マルコフ連鎖(CTMC)を生じさせる
最近提案された抽象化手法では,このCTMCを離散時間連続空間プロセスに置き換えるためにディープラーニングを用いる。
本稿では、最適なニューラルネットワークアーキテクチャを学習することで、CRNの深い抽象化をさらに自動化することを提案する。
論文 参考訳(メタデータ) (2020-01-30T13:49:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。