Non-zero-sum Game Control for Multi-vehicle Driving via Reinforcement
Learning
- URL: http://arxiv.org/abs/2302.03958v1
- Date: Wed, 8 Feb 2023 09:27:20 GMT
- Title: Non-zero-sum Game Control for Multi-vehicle Driving via Reinforcement
Learning
- Authors: Xujie Song, Zexi Lin
- Abstract summary: This paper constructs the multi-vehicle driving scenario as a non-zero-sum game.
Decisions are made by Nash equilibrium driving strategy.
Our algorithm could drive perfectly by directly controlling acceleration and steering angle.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When a vehicle drives on the road, its behaviors will be affected by
surrounding vehicles. Prediction and decision should not be considered as two
separate stages because all vehicles make decisions interactively. This paper
constructs the multi-vehicle driving scenario as a non-zero-sum game and
proposes a novel game control framework, which consider prediction, decision
and control as a whole. The mutual influence of interactions between vehicles
is considered in this framework because decisions are made by Nash equilibrium
strategy. To efficiently obtain the strategy, ADP, a model-based reinforcement
learning method, is used to solve coupled Hamilton-Jacobi-Bellman equations.
Driving performance is evaluated by tracking, efficiency, safety and comfort
indices. Experiments show that our algorithm could drive perfectly by directly
controlling acceleration and steering angle. Vehicles could learn interactive
behaviors such as overtaking and pass. In summary, we propose a non-zero-sum
game framework for modeling multi-vehicle driving, provide an effective way to
solve the Nash equilibrium driving strategy, and validate at non-signalized
intersections.
Related papers
- Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
Connected Autonomous Vehicles (CAVs) have begun to open road testing around the world, but their safety and efficiency performance in complex scenarios is still not satisfactory.
This paper proposes CoDrivingLLM, an interactive and learnable LLM-driven cooperative driving framework.
arXiv Detail & Related papers (2024-09-19T14:36:00Z) - A Conflicts-free, Speed-lossless KAN-based Reinforcement Learning Decision System for Interactive Driving in Roundabouts [17.434924472015812]
This paper introduces a learning-based algorithm tailored to foster safe and efficient driving behaviors in roundabouts.
The proposed algorithm employs a deep Q-learning network to learn safe and efficient driving strategies in complex multi-vehicle roundabouts.
The results show that our proposed system consistently achieves safe and efficient driving whilst maintaining a stable training process.
arXiv Detail & Related papers (2024-08-15T16:10:25Z) - DriveCoT: Integrating Chain-of-Thought Reasoning with End-to-End Driving [81.04174379726251]
This paper collects a comprehensive end-to-end driving dataset named DriveCoT.
It contains sensor data, control decisions, and chain-of-thought labels to indicate the reasoning process.
We propose a baseline model called DriveCoT-Agent, trained on our dataset, to generate chain-of-thought predictions and final decisions.
arXiv Detail & Related papers (2024-03-25T17:59:01Z) - Interaction-Aware Decision-Making for Autonomous Vehicles in Forced
Merging Scenario Leveraging Social Psychology Factors [7.812717451846781]
We consider a behavioral model that incorporates both social behaviors and personal objectives of the interacting drivers.
We develop a receding-horizon control-based decision-making strategy that estimates online the other drivers' intentions.
arXiv Detail & Related papers (2023-09-25T19:49:14Z) - ReMAV: Reward Modeling of Autonomous Vehicles for Finding Likely Failure
Events [1.84926694477846]
We propose a black-box testing framework that uses offline trajectories first to analyze the existing behavior of autonomous vehicles.
Our experiment shows an increase in 35, 23, 48, and 50% in the occurrences of vehicle collision, road object collision, pedestrian collision, and offroad steering events.
arXiv Detail & Related papers (2023-08-28T13:09:00Z) - Decision Making for Autonomous Driving in Interactive Merge Scenarios
via Learning-based Prediction [39.48631437946568]
This paper focuses on the complex task of merging into moving traffic where uncertainty emanates from the behavior of other drivers.
We frame the problem as a partially observable Markov decision process (POMDP) and solve it online with Monte Carlo tree search.
The solution to the POMDP is a policy that performs high-level driving maneuvers, such as giving way to an approaching car, keeping a safe distance from the vehicle in front or merging into traffic.
arXiv Detail & Related papers (2023-03-29T16:12:45Z) - Exploring the trade off between human driving imitation and safety for
traffic simulation [0.34410212782758043]
We show that a trade-off exists between imitating human driving and maintaining safety when learning driving policies.
We propose a multi objective learning algorithm (MOPPO) that improves both objectives together.
arXiv Detail & Related papers (2022-08-09T14:30:19Z) - Learning to drive from a world on rails [78.28647825246472]
We learn an interactive vision-based driving policy from pre-recorded driving logs via a model-based approach.
A forward model of the world supervises a driving policy that predicts the outcome of any potential driving trajectory.
Our method ranks first on the CARLA leaderboard, attaining a 25% higher driving score while using 40 times less data.
arXiv Detail & Related papers (2021-05-03T05:55:30Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
We propose TransFuser, a novel Multi-Modal Fusion Transformer, to integrate image and LiDAR representations using attention.
Our approach achieves state-of-the-art driving performance while reducing collisions by 76% compared to geometry-based fusion.
arXiv Detail & Related papers (2021-04-19T11:48:13Z) - Deep Structured Reactive Planning [94.92994828905984]
We propose a novel data-driven, reactive planning objective for self-driving vehicles.
We show that our model outperforms a non-reactive variant in successfully completing highly complex maneuvers.
arXiv Detail & Related papers (2021-01-18T01:43:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.