Understanding Long Videos in One Multimodal Language Model Pass
- URL: http://arxiv.org/abs/2403.16998v1
- Date: Mon, 25 Mar 2024 17:59:09 GMT
- Title: Understanding Long Videos in One Multimodal Language Model Pass
- Authors: Kanchana Ranasinghe, Xiang Li, Kumara Kahatapitiya, Michael S. Ryoo,
- Abstract summary: Large Language Models (LLMs) are known to contain a strong awareness of world knowledge.
We propose Likelihood Selection, a technique that unlocks faster inference in autoregressive LLMs.
Our resulting Multimodal Video Understanding framework demonstrates state-of-the-art performance across long-video and fine-grained action recognition benchmarks.
- Score: 44.78900245769057
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Large Language Models (LLMs), known to contain a strong awareness of world knowledge, have allowed recent approaches to achieve excellent performance on Long-Video Understanding benchmarks, but at high inference costs. In this work, we first propose Likelihood Selection, a simple technique that unlocks faster inference in autoregressive LLMs for multiple-choice tasks common in long-video benchmarks. In addition to faster inference, we discover the resulting models to yield surprisingly good accuracy on long-video tasks, even with no video specific information. Building on this, we inject video-specific object-centric information extracted from off-the-shelf pre-trained models and utilize natural language as a medium for information fusion. Our resulting Multimodal Video Understanding (MVU) framework demonstrates state-of-the-art performance across long-video and fine-grained action recognition benchmarks. Code available at: https://github.com/kahnchana/mvu
Related papers
- InternVideo2.5: Empowering Video MLLMs with Long and Rich Context Modeling [56.130911402831906]
This paper aims to improve the performance of video large language models (LM) via long and rich context (LRC) modeling.
We develop a new version of InternVideo2.5 with focus on enhancing the original MLLMs' ability to perceive fine-grained details in videos.
Experimental results demonstrate this unique designML LRC greatly improves the results of video MLLM in mainstream understanding benchmarks.
arXiv Detail & Related papers (2025-01-21T18:59:00Z) - VideoRefer Suite: Advancing Spatial-Temporal Object Understanding with Video LLM [81.15525024145697]
Video Large Language Models (Video LLMs) have recently exhibited remarkable capabilities in general video understanding.
However, they mainly focus on holistic comprehension and struggle with capturing fine-grained spatial and temporal details.
We introduce the VideoRefer Suite to empower Video LLM for finer-level spatial-temporal video understanding.
arXiv Detail & Related papers (2024-12-31T18:56:46Z) - MMBench-Video: A Long-Form Multi-Shot Benchmark for Holistic Video Understanding [67.56182262082729]
We introduce MMBench-Video, a quantitative benchmark to rigorously evaluate large vision-language models (LVLMs) in video understanding.
MMBench-Video incorporates lengthy videos from YouTube and employs free-form questions, mirroring practical use cases.
The benchmark is meticulously crafted to probe the models' temporal reasoning skills, with all questions human-annotated according to a carefully constructed ability taxonomy.
arXiv Detail & Related papers (2024-06-20T17:26:01Z) - Needle In A Video Haystack: A Scalable Synthetic Evaluator for Video MLLMs [20.168429351519055]
Video understanding is a crucial next step for multimodal large language models (LMLMs)
We propose VideoNIAH (Video Needle In A Haystack), a benchmark construction framework through synthetic video generation.
We conduct a comprehensive evaluation of both proprietary and open-source models, uncovering significant differences in their video understanding capabilities.
arXiv Detail & Related papers (2024-06-13T17:50:05Z) - How Good is my Video LMM? Complex Video Reasoning and Robustness Evaluation Suite for Video-LMMs [98.37571997794072]
We present the Complex Video Reasoning and Robustness Evaluation Suite (CVRR-ES)
CVRR-ES comprehensively assesses the performance of Video-LMMs across 11 diverse real-world video dimensions.
Our findings provide valuable insights for building the next generation of human-centric AI systems.
arXiv Detail & Related papers (2024-05-06T17:59:45Z) - MA-LMM: Memory-Augmented Large Multimodal Model for Long-Term Video Understanding [66.56100008577134]
This study focuses on designing an efficient and effective model for long-term video understanding.
We propose to process videos in an online manner and store past video information in a memory bank.
Our model can achieve state-of-the-art performances across multiple datasets.
arXiv Detail & Related papers (2024-04-08T17:59:24Z) - ST-LLM: Large Language Models Are Effective Temporal Learners [58.79456373423189]
Large Language Models (LLMs) have showcased impressive capabilities in text comprehension and generation.
How to effectively encode and understand videos in video-based dialogue systems remains to be solved.
We propose ST-LLM, an effective video-LLM baseline with spatial-temporal sequence modeling inside LLM.
arXiv Detail & Related papers (2024-03-30T10:11:26Z) - Video Understanding with Large Language Models: A Survey [97.29126722004949]
Given the remarkable capabilities of large language models (LLMs) in language and multimodal tasks, this survey provides a detailed overview of recent advancements in video understanding.
The emergent capabilities Vid-LLMs are surprisingly advanced, particularly their ability for open-ended multi-granularity reasoning.
This survey presents a comprehensive study of the tasks, datasets, benchmarks, and evaluation methodologies for Vid-LLMs.
arXiv Detail & Related papers (2023-12-29T01:56:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.