論文の概要: Semantic Ranking for Automated Adversarial Technique Annotation in Security Text
- arxiv url: http://arxiv.org/abs/2403.17068v1
- Date: Mon, 25 Mar 2024 18:03:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 19:55:36.581437
- Title: Semantic Ranking for Automated Adversarial Technique Annotation in Security Text
- Title(参考訳): セキュリティテキストにおける自動逆法アノテーションのセマンティックランク付け
- Authors: Udesh Kumarasinghe, Ahmed Lekssays, Husrev Taha Sencar, Sabri Boughorbel, Charitha Elvitigala, Preslav Nakov,
- Abstract要約: 本稿では,脅威知能テキストから構造化された脅威行動を抽出する新しい手法を提案する。
提案手法は,効率と効率性を最適化する多段階ランキングアーキテクチャに基づく。
- 参考スコア(独自算出の注目度): 33.3039037112338
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a new method for extracting structured threat behaviors from threat intelligence text. Our method is based on a multi-stage ranking architecture that allows jointly optimizing for efficiency and effectiveness. Therefore, we believe this problem formulation better aligns with the real-world nature of the task considering the large number of adversary techniques and the extensive body of threat intelligence created by security analysts. Our findings show that the proposed system yields state-of-the-art performance results for this task. Results show that our method has a top-3 recall performance of 81\% in identifying the relevant technique among 193 top-level techniques. Our tests also demonstrate that our system performs significantly better (+40\%) than the widely used large language models when tested under a zero-shot setting.
- Abstract(参考訳): 本稿では,脅威知能テキストから構造化された脅威行動を抽出する新しい手法を提案する。
提案手法は,効率と効率性を最適化する多段階ランキングアーキテクチャに基づく。
したがって,この問題の定式化は,多数の敵技術と,セキュリティアナリストが生み出した広範囲な脅威知能を考慮し,タスクの現実的な性質とよく一致していると考えている。
提案手法は,本課題に対する最先端の性能評価結果が得られることを示す。
その結果, 提案手法は, 193 トップレベル技術のうち, 81 % のリコール性能を有することがわかった。
また, ゼロショット条件下での試験では, 広く使われている大規模言語モデルに比べて, システムの性能は有意に向上した(+40\%)。
関連論文リスト
- SURE: SUrvey REcipes for building reliable and robust deep networks [12.268921703825258]
本稿では,深層ニューラルネットワークにおける不確実性推定手法を再検討し,信頼性を高めるために一連の手法を統合する。
我々は,不確実性推定の有効性を示す重要なテストベッドである故障予測のベンチマークに対して,SUREを厳格に評価する。
データ破損、ラベルノイズ、長い尾のクラス分布といった現実世界の課題に適用した場合、SUREは顕著な堅牢性を示し、現在の最先端の特殊手法と同等あるいは同等な結果をもたらす。
論文 参考訳(メタデータ) (2024-03-01T13:58:19Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT、Automated Safety Scenario Red Teamingは、セマンティックなアグリゲーション、ターゲットブートストラップ、敵の知識注入という3つの方法で構成されている。
このプロンプトを4つの安全領域に分割し、ドメインがモデルの性能にどのように影響するかを詳細に分析する。
統計的に有意な性能差は, 意味的関連シナリオにおける絶対分類精度が最大11%, ゼロショット逆数設定では最大19%の絶対誤差率であることがわかった。
論文 参考訳(メタデータ) (2023-10-14T17:10:28Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
本稿では,DAF(Disdisrepancy Aware Framework)を提案する。
本手法は,デコーダの欠陥同定に外見に依存しないキューを利用して,その合成外観への依存を緩和する。
単純な合成戦略の下では,既存の手法を大きなマージンで上回り,また,最先端のローカライゼーション性能も達成している。
論文 参考訳(メタデータ) (2023-10-11T15:21:40Z) - Predicted Embedding Power Regression for Large-Scale Out-of-Distribution
Detection [77.1596426383046]
本研究では,学習過程において学習したラベル分布に基づいて,予測されたクラスラベルの確率を計算する手法を開発した。
提案手法は,計算コストの最小化のみで,現在の最先端手法よりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2023-03-07T18:28:39Z) - Reinforced Labels: Multi-Agent Deep Reinforcement Learning for
Point-Feature Label Placement [0.0]
データビジュアライゼーションにおける複雑なタスクである配置のラベル付けにReinforcement Learning(RL)を導入する。
提案手法は,多エージェント深層強化学習を用いてラベル配置戦略を学習する。
提案手法により訓練された戦略は,未学習エージェントのランダムな戦略よりも有意に優れていた。
論文 参考訳(メタデータ) (2023-03-02T16:18:00Z) - Evaluating Membership Inference Through Adversarial Robustness [6.983991370116041]
本稿では,敵の強靭性に基づくメンバシップ推論攻撃の強化手法を提案する。
提案手法をFashion-MNIST, CIFAR-10, CIFAR-100の3つのデータセットで評価した。
論文 参考訳(メタデータ) (2022-05-14T06:48:47Z) - Bridge the Gap Between CV and NLP! A Gradient-based Textual Adversarial
Attack Framework [17.17479625646699]
そこで本研究では,テキストの敵対的サンプルを作成するための統一的なフレームワークを提案する。
本稿では,T-PGD(Textual Projected Gradient Descent)という攻撃アルゴリズムを用いて,我々のフレームワークをインスタンス化する。
論文 参考訳(メタデータ) (2021-10-28T17:31:51Z) - Efficient falsification approach for autonomous vehicle validation using
a parameter optimisation technique based on reinforcement learning [6.198523595657983]
自律走行車(AV)の大規模展開は、まだ解決されていない多くの安全上の課題にもかかわらず、差し迫っているように見える。
交通参加者とダイナミックワールドの行動の不確実性は、先進的な自律システムにおいて反応を引き起こす。
本稿では,システム・アンダー・テストを評価するための効率的なファルシフィケーション手法を提案する。
論文 参考訳(メタデータ) (2020-11-16T02:56:13Z) - On Learning Text Style Transfer with Direct Rewards [101.97136885111037]
平行コーパスの欠如により、テキストスタイルの転送タスクの教師付きモデルを直接訓練することは不可能である。
我々は、当初、微調整されたニューラルマシン翻訳モデルに使用されていた意味的類似度指標を活用している。
我々のモデルは、強いベースラインに対する自動評価と人的評価の両方において大きな利益をもたらす。
論文 参考訳(メタデータ) (2020-10-24T04:30:02Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBAは、確率論的モデリング、情報理論、統計学といった側面を組み合わせた安全な強化学習のためのフレームワークである。
我々は,低次元および高次元の状態表現を含む安全な力学系ベンチマークを用いて,アルゴリズムの評価を行った。
アクティブなメトリクスと安全性の制約を詳細に分析することで,フレームワークの有効性を直感的に評価する。
論文 参考訳(メタデータ) (2020-06-12T10:40:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。