論文の概要: Reinforced Labels: Multi-Agent Deep Reinforcement Learning for
Point-Feature Label Placement
- arxiv url: http://arxiv.org/abs/2303.01388v3
- Date: Mon, 18 Sep 2023 10:20:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 00:40:13.774283
- Title: Reinforced Labels: Multi-Agent Deep Reinforcement Learning for
Point-Feature Label Placement
- Title(参考訳): 強化ラベル:ポイント特徴ラベル配置のためのマルチエージェント深層強化学習
- Authors: Petr Bob\'ak, Ladislav \v{C}mol\'ik, Martin \v{C}ad\'ik
- Abstract要約: データビジュアライゼーションにおける複雑なタスクである配置のラベル付けにReinforcement Learning(RL)を導入する。
提案手法は,多エージェント深層強化学習を用いてラベル配置戦略を学習する。
提案手法により訓練された戦略は,未学習エージェントのランダムな戦略よりも有意に優れていた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the recent years, Reinforcement Learning combined with Deep Learning
techniques has successfully proven to solve complex problems in various
domains, including robotics, self-driving cars, and finance. In this paper, we
are introducing Reinforcement Learning (RL) to label placement, a complex task
in data visualization that seeks optimal positioning for labels to avoid
overlap and ensure legibility. Our novel point-feature label placement method
utilizes Multi-Agent Deep Reinforcement Learning to learn the label placement
strategy, the first machine-learning-driven labeling method, in contrast to the
existing hand-crafted algorithms designed by human experts. To facilitate RL
learning, we developed an environment where an agent acts as a proxy for a
label, a short textual annotation that augments visualization. Our results show
that the strategy trained by our method significantly outperforms the random
strategy of an untrained agent and the compared methods designed by human
experts in terms of completeness (i.e., the number of placed labels). The
trade-off is increased computation time, making the proposed method slower than
the compared methods. Nevertheless, our method is ideal for scenarios where the
labeling can be computed in advance, and completeness is essential, such as
cartographic maps, technical drawings, and medical atlases. Additionally, we
conducted a user study to assess the perceived performance. The outcomes
revealed that the participants considered the proposed method to be
significantly better than the other examined methods. This indicates that the
improved completeness is not just reflected in the quantitative metrics but
also in the subjective evaluation by the participants.
- Abstract(参考訳): 近年、強化学習とディープラーニング技術が組み合わさって、ロボット工学、自動運転車、金融など、さまざまな分野の複雑な問題を解決することに成功した。
本稿では,ラベルの重なりを回避し,信頼性を確保するために,ラベルの最適な位置決めを求めるデータ可視化における複雑なタスクであるラベル配置に強化学習(rl)を導入する。
提案手法は,多エージェント深層強化学習を用いて,人間専門家が設計した既存の手作りアルゴリズムとは対照的に,最初の機械学習によるラベル付け手法であるラベル配置戦略を学習する。
RL学習を容易にするために,エージェントがラベルのプロキシとして機能する環境を開発した。
提案手法により訓練された戦略は,訓練されていないエージェントのランダムな戦略と,完全性(配置ラベル数)の観点から,人間の専門家が設計した比較手法とを著しく上回ることを示す。
このトレードオフは計算時間を増加させるため,提案手法は比較手法よりも遅くなる。
しかし,本手法は事前にラベル付けを計算できるシナリオに最適であり,地図地図,技術図面,医療アトラスなどの完全性は不可欠である。
また,性能評価のためのユーザ調査を行った。
その結果,提案手法は他の検査方法よりも有意に優れていると考えられた。
この結果から,完全性の向上は定量的指標だけでなく,主観的評価にも反映されることが示唆された。
関連論文リスト
- ALE: A Simulation-Based Active Learning Evaluation Framework for the
Parameter-Driven Comparison of Query Strategies for NLP [3.024761040393842]
Active Learning (AL)は、後続のサンプルやランダムなサンプルではなく、次にアノテータに有望なデータポイントを提案する。
この方法は、モデルパフォーマンスを維持しながらアノテーションの労力を節約することを目的としている。
NLPにおけるAL戦略の比較評価のための再現可能な能動学習評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-01T10:42:11Z) - Unleashing the Potential of Regularization Strategies in Learning with
Noisy Labels [65.92994348757743]
クロスエントロピー損失を用いた単純なベースラインと、広く使われている正規化戦略を組み合わせることで、最先端の手法より優れていることを示す。
この結果から,正規化戦略の組み合わせは,ノイズラベルを用いた学習の課題に対処する上で,複雑なアルゴリズムよりも効果的であることが示唆された。
論文 参考訳(メタデータ) (2023-07-11T05:58:20Z) - New Intent Discovery with Pre-training and Contrastive Learning [21.25371293641141]
新しい意図発見は、ユーザ発話から新しい意図カテゴリーを明らかにして、サポート対象クラスのセットを拡張することを目的としている。
既存のアプローチは通常、大量のラベル付き発話に依存する。
本稿では,クラスタリングのためのラベルなしデータにおける自己超越的信号を活用するために,新たなコントラスト損失を提案する。
論文 参考訳(メタデータ) (2022-05-25T17:07:25Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
完全ラベル付きデータからの学習は、Person Re-IdentificationやText Authorship Attributionなどのマルチメディアフォレスト問題において困難である。
近年の自己教師型学習法は,基礎となるクラスに意味的差異が有る場合に,完全ラベル付きデータを扱う際に有効であることが示されている。
本研究では,異なるクラスからのサンプルが顕著に多様性を持っていない場合でも,ラベルのないデータから学習できるようにすることにより,個人再認識とテキストオーサシップの属性に対処する戦略を提案する。
論文 参考訳(メタデータ) (2022-02-07T13:08:11Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
本稿では,検知器の不確実性と頑健性の両方を考慮した,アクティブラーニングのための統一的なフレームワークを提案する。
提案手法は, 確率分布のドリフトを抑えながら, 極めて確実な予測を擬似ラベル化することができる。
論文 参考訳(メタデータ) (2021-06-22T16:53:09Z) - Towards Good Practices for Efficiently Annotating Large-Scale Image
Classification Datasets [90.61266099147053]
多数の画像の分類ラベルを収集するための効率的なアノテーション戦略を検討する。
人間のラベリング作業を最小化するための修正とベストプラクティスを提案します。
ImageNet100の125kイメージサブセットのシミュレーション実験では、平均で0.35のアノテーションで80%のトップ-1の精度でアノテートできることが示されている。
論文 参考訳(メタデータ) (2021-04-26T16:29:32Z) - Semi-supervised Active Learning for Instance Segmentation via Scoring
Predictions [25.408505612498423]
インスタンスセグメンテーションのための新規かつ原則的な半教師付きアクティブ学習フレームワークを提案する。
具体的には,クラス,バウンディングボックス,マスクの手がかりを明示的に評価するトリプレットスコア予測(tsp)という不確実性サンプリング戦略を提案する。
医用画像データセットを用いた結果から,提案手法が有意義な方法で利用可能なデータから知識を具現化することを示す。
論文 参考訳(メタデータ) (2020-12-09T02:36:52Z) - Can Semantic Labels Assist Self-Supervised Visual Representation
Learning? [194.1681088693248]
近隣環境におけるコントラスト調整(SCAN)という新しいアルゴリズムを提案する。
一連のダウンストリームタスクにおいて、SCANは従来の完全教師付きおよび自己教師付きメソッドよりも優れたパフォーマンスを達成する。
本研究は, セマンティックラベルが自己指導的手法の補助に有用であることを明らかにする。
論文 参考訳(メタデータ) (2020-11-17T13:25:00Z) - Improving Classification through Weak Supervision in Context-specific
Conversational Agent Development for Teacher Education [1.215785021723604]
教育シナリオ固有の会話エージェントを開発するのに必要な労力は、時間を要する。
アノテーションをモデリングするための従来のアプローチは、何千もの例をラベル付けし、アノテーション間の合意と多数決を計算することに依存してきた。
本稿では,これらの問題に対処するために,多タスク弱監視手法とアクティブラーニングを組み合わせた手法を提案する。
論文 参考訳(メタデータ) (2020-10-23T23:39:40Z) - Learning to Learn in a Semi-Supervised Fashion [41.38876517851431]
本稿では,ラベル付きデータとラベルなしデータの両方から半教師付き学習を行うメタ学習手法を提案する。
我々の戦略は、完全に教師付き学習タスクに適用可能な自己教師付き学習スキームとみなすことができる。
論文 参考訳(メタデータ) (2020-08-25T17:59:53Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
本稿では, ラベル付きデータとラベルなしデータの両方を, 知識蒸留による精度向上に活用することを提案する。
摂動に敏感なサンプルマイニングを用いたマスク誘導型平均教師フレームワークを提案する。
実験の結果,ラベル付きデータのみから学習した教師付き手法と比較して,提案手法は性能を著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-21T13:27:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。