論文の概要: A Comparative Analysis of Visual Odometry in Virtual and Real-World Railways Environments
- arxiv url: http://arxiv.org/abs/2403.17084v1
- Date: Mon, 25 Mar 2024 18:18:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 19:55:36.513461
- Title: A Comparative Analysis of Visual Odometry in Virtual and Real-World Railways Environments
- Title(参考訳): 仮想及び実世界の鉄道環境におけるビジュアルオドメトリーの比較分析
- Authors: Gianluca D'Amico, Mauro Marinoni, Giorgio Buttazzo,
- Abstract要約: 本稿では,仮想合成環境と実世界のシナリオの両方に適用したSLAMアルゴリズムの性能の比較分析を行う。
その結果,鉄道領域における認識タスクの促進に向けたグラフィックシミュレーションの可能性と可能性を強調した。
- 参考スコア(独自算出の注目度): 3.2750823836771685
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Perception tasks play a crucial role in the development of automated operations and systems across multiple application fields. In the railway transportation domain, these tasks can improve the safety, reliability, and efficiency of various perations, including train localization, signal recognition, and track discrimination. However, collecting considerable and precisely labeled datasets for testing such novel algorithms poses extreme challenges in the railway environment due to the severe restrictions in accessing the infrastructures and the practical difficulties associated with properly equipping trains with the required sensors, such as cameras and LiDARs. The remarkable innovations of graphic engine tools offer new solutions to craft realistic synthetic datasets. To illustrate the advantages of employing graphic simulation for early-stage testing of perception tasks in the railway domain, this paper presents a comparative analysis of the performance of a SLAM algorithm applied both in a virtual synthetic environment and a real-world scenario. The analysis leverages virtual railway environments created with the latest version of Unreal Engine, facilitating data collection and allowing the examination of challenging scenarios, including low-visibility, dangerous operational modes, and complex environments. The results highlight the feasibility and potentiality of graphic simulation to advance perception tasks in the railway domain.
- Abstract(参考訳): 知覚タスクは、複数のアプリケーション分野にわたる自動操作やシステムの開発において重要な役割を担います。
鉄道輸送分野において、これらのタスクは、列車のローカライゼーション、信号認識、トラック識別など、様々なペインの安全性、信頼性、効率を向上させることができる。
しかし、そのような新しいアルゴリズムをテストするために、相当かつ正確にラベル付けされたデータセットを収集することは、インフラへのアクセスの厳しい制限と、カメラやLiDARなどの必要なセンサーを適切に装備する際の実用上の困難により、鉄道環境において極端な課題を生じさせる。
グラフィックエンジンツールの驚くべき革新は、リアルな合成データセットを作るための新しいソリューションを提供する。
本稿では,鉄道領域における知覚タスクの初期段階テストにグラフィックシミュレーションを用いることの利点を説明するために,仮想合成環境と実世界のシナリオの両方に適用したSLAMアルゴリズムの性能の比較分析を行った。
この分析では、Unreal Engineの最新バージョンで作成された仮想鉄道環境を活用し、データ収集を容易にし、低視認性、危険な運用モード、複雑な環境など、困難なシナリオの検証を可能にする。
その結果,鉄道領域における認識タスクの促進に向けたグラフィックシミュレーションの可能性と可能性を強調した。
関連論文リスト
- Synthetica: Large Scale Synthetic Data for Robot Perception [21.415878105900187]
本稿では,ロバストな状態推定器を訓練するための大規模合成データ生成手法であるSyntheticaを提案する。
本稿では,ほとんどの状態推定問題のフロントエンドとして機能する重要な問題であるオブジェクト検出の課題に焦点を当てる。
レイトレーシングのデータを利用して270万の画像を生成し、高精度なリアルタイム検出変換器を訓練する。
我々は,従来のSOTAの9倍の50-100Hzの検出器を動作させながら,物体検出タスクにおける最先端性能を示す。
論文 参考訳(メタデータ) (2024-10-28T15:50:56Z) - A Joint Approach Towards Data-Driven Virtual Testing for Automated Driving: The AVEAS Project [2.4163276807189282]
シミュレーションのパラメトリゼーションや検証には、現実世界のデータが著しく不足している。
本稿では,ドイツのAVAS研究プロジェクトの結果について述べる。
論文 参考訳(メタデータ) (2024-05-10T07:36:03Z) - Augmented Reality based Simulated Data (ARSim) with multi-view consistency for AV perception networks [47.07188762367792]
ARSimは3次元合成オブジェクトを用いた実写多視点画像データの拡張を目的としたフレームワークである。
実データを用いて簡易な仮想シーンを構築し,その内部に戦略的に3D合成資産を配置する。
結果として得られたマルチビュー一貫性のあるデータセットは、自動運転車のためのマルチカメラ知覚ネットワークのトレーニングに使用される。
論文 参考訳(メタデータ) (2024-03-22T17:49:11Z) - TrainSim: A Railway Simulation Framework for LiDAR and Camera Dataset
Generation [1.2165229201148093]
本稿では,仮想環境下で現実的な鉄道シナリオを生成できる視覚シミュレーションフレームワークを提案する。
シミュレーションされたLiDARとカメラから慣性データとラベル付きデータセットを自動的に生成する。
論文 参考訳(メタデータ) (2023-02-28T11:00:13Z) - Deep Learning based Computer Vision Methods for Complex Traffic
Environments Perception: A Review [22.53793239186955]
本稿では、インテリジェントトランスポートシステム(ITS)と自律運転(AD)におけるコンピュータビジョンの応用に関する広範な文献レビューを行った。
データ課題は、トレーニングデータの収集とラベル付け、実際の状況への関連性、データセット固有のバイアス、処理に必要な大量のデータ、プライバシの懸念に関連している。
ディープラーニング(DL)モデルは通常、組み込みハードウェアのリアルタイム処理には複雑すぎるため、説明可能性や一般化性が欠如しており、現実世界の設定ではテストが難しい。
論文 参考訳(メタデータ) (2022-11-09T05:16:01Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
仮想データから絶対スケールを取得するための新しいフレームワークであるVRVOを提案する。
まず、モノクロ実画像とステレオ仮想データの両方を用いて、スケール対応の異種ネットワークをトレーニングする。
結果として生じるスケール一貫性の相違は、直接VOシステムと統合される。
論文 参考訳(メタデータ) (2022-03-11T01:51:54Z) - Optical flow-based branch segmentation for complex orchard environments [73.11023209243326]
シミュレーションでは、シミュレーションでは、シミュレーションされたRGBデータと光フローのみを用いてニューラルネットワークシステムを訓練する。
このニューラルネットワークは、忙しい果樹園環境において、追加の現実世界のトレーニングや、標準カメラ以外の特別な設定や機器を使用することなく、前景の枝のセグメンテーションを行うことができる。
その結果,本システムは高精度であり,手動ラベル付きRGBDデータを用いたネットワークと比較すると,トレーニングセットと異なる環境において,より一貫性と堅牢性を実現していることがわかった。
論文 参考訳(メタデータ) (2022-02-26T03:38:20Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
ドメイン適応プロセス中に関心のある小さなオブジェクトの情報を保存するために,事前の意味分類を用いたサイクガンに基づくbevドメイン適応法を提案する。
生成したBEVの品質は,KITTI 3D Object Detection Benchmarkの最先端3Dオブジェクト検出フレームワークを用いて評価されている。
論文 参考訳(メタデータ) (2021-04-22T12:47:37Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
強化学習(Reinforcement Learning, RL)は、複雑なロボットタスクを解決する強力なツールである。
RL は sim-to-real transfer problem として知られる現実世界では直接作用しない。
本稿では,点雲と環境ランダム化によって構築された観測空間を学習する手法を提案する。
論文 参考訳(メタデータ) (2020-07-27T17:46:59Z) - Transferable Active Grasping and Real Embodied Dataset [48.887567134129306]
ハンドマウント型RGB-Dカメラを用いて把握可能な視点を探索する方法を示す。
現実的な3段階の移動可能な能動把握パイプラインを開発し、未確認のクラッタシーンに適応する。
本研究のパイプラインでは,カテゴリ非関連行動の把握と確保において,スパース報酬問題を克服するために,新しいマスク誘導報酬を提案する。
論文 参考訳(メタデータ) (2020-04-28T08:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。