Task2Box: Box Embeddings for Modeling Asymmetric Task Relationships
- URL: http://arxiv.org/abs/2403.17173v2
- Date: Fri, 29 Mar 2024 22:46:03 GMT
- Title: Task2Box: Box Embeddings for Modeling Asymmetric Task Relationships
- Authors: Rangel Daroya, Aaron Sun, Subhransu Maji,
- Abstract summary: We propose Task2Box, an approach to represent tasks using box embeddings.
We show that Task2Box accurately predicts unseen hierarchical relationships between nodes in ImageNet and iNaturalist datasets.
We also show that box embeddings estimated from task representations can be used to predict relationships more accurately than classifiers trained on the same representations.
- Score: 19.02802837808466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling and visualizing relationships between tasks or datasets is an important step towards solving various meta-tasks such as dataset discovery, multi-tasking, and transfer learning. However, many relationships, such as containment and transferability, are naturally asymmetric and current approaches for representation and visualization (e.g., t-SNE) do not readily support this. We propose Task2Box, an approach to represent tasks using box embeddings -- axis-aligned hyperrectangles in low dimensional spaces -- that can capture asymmetric relationships between them through volumetric overlaps. We show that Task2Box accurately predicts unseen hierarchical relationships between nodes in ImageNet and iNaturalist datasets, as well as transferability between tasks in the Taskonomy benchmark. We also show that box embeddings estimated from task representations (e.g., CLIP, Task2Vec, or attribute based) can be used to predict relationships between unseen tasks more accurately than classifiers trained on the same representations, as well as handcrafted asymmetric distances (e.g., KL divergence). This suggests that low-dimensional box embeddings can effectively capture these task relationships and have the added advantage of being interpretable. We use the approach to visualize relationships among publicly available image classification datasets on popular dataset hosting platform called Hugging Face.
Related papers
- RepVF: A Unified Vector Fields Representation for Multi-task 3D Perception [64.80760846124858]
This paper proposes a novel unified representation, RepVF, which harmonizes the representation of various perception tasks.
RepVF characterizes the structure of different targets in the scene through a vector field, enabling a single-head, multi-task learning model.
Building upon RepVF, we introduce RFTR, a network designed to exploit the inherent connections between different tasks.
arXiv Detail & Related papers (2024-07-15T16:25:07Z) - Comprehensive Generative Replay for Task-Incremental Segmentation with Concurrent Appearance and Semantic Forgetting [49.87694319431288]
Generalist segmentation models are increasingly favored for diverse tasks involving various objects from different image sources.
We propose a Comprehensive Generative (CGR) framework that restores appearance and semantic knowledge by synthesizing image-mask pairs.
Experiments on incremental tasks (cardiac, fundus and prostate segmentation) show its clear advantage for alleviating concurrent appearance and semantic forgetting.
arXiv Detail & Related papers (2024-06-28T10:05:58Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Relational Multi-Task Learning: Modeling Relations between Data and
Tasks [84.41620970886483]
Key assumption in multi-task learning is that at the inference time the model only has access to a given data point but not to the data point's labels from other tasks.
Here we introduce a novel relational multi-task learning setting where we leverage data point labels from auxiliary tasks to make more accurate predictions.
We develop MetaLink, where our key innovation is to build a knowledge graph that connects data points and tasks.
arXiv Detail & Related papers (2023-03-14T07:15:41Z) - Wasserstein Task Embedding for Measuring Task Similarities [14.095478018850374]
Measuring similarities between different tasks is critical in a broad spectrum of machine learning problems.
We leverage the optimal transport theory and define a novel task embedding for supervised classification.
We show that the proposed embedding leads to a significantly faster comparison of tasks compared to related approaches.
arXiv Detail & Related papers (2022-08-24T18:11:04Z) - X2Parser: Cross-Lingual and Cross-Domain Framework for Task-Oriented
Compositional Semantic Parsing [51.81533991497547]
Task-oriented compositional semantic parsing (TCSP) handles complex nested user queries.
We present X2 compared a transferable Cross-lingual and Cross-domain for TCSP.
We propose to predict flattened intents and slots representations separately and cast both prediction tasks into sequence labeling problems.
arXiv Detail & Related papers (2021-06-07T16:40:05Z) - Taskology: Utilizing Task Relations at Scale [28.09712466727001]
We show that we can leverage the inherent relationships among collections of tasks, as they are trained jointly.
explicitly utilizing the relationships between tasks allows improving their performance while dramatically reducing the need for labeled data.
We demonstrate our framework on subsets of the following collection of tasks: depth and normal prediction, semantic segmentation, 3D motion and ego-motion estimation, and object tracking and 3D detection in point clouds.
arXiv Detail & Related papers (2020-05-14T22:53:46Z) - Low Resource Multi-Task Sequence Tagging -- Revisiting Dynamic
Conditional Random Fields [67.51177964010967]
We compare different models for low resource multi-task sequence tagging that leverage dependencies between label sequences for different tasks.
We find that explicit modeling of inter-dependencies between task predictions outperforms single-task as well as standard multi-task models.
arXiv Detail & Related papers (2020-05-01T07:11:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.