論文の概要: LOTUS: Evasive and Resilient Backdoor Attacks through Sub-Partitioning
- arxiv url: http://arxiv.org/abs/2403.17188v1
- Date: Mon, 25 Mar 2024 21:01:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 19:26:23.262592
- Title: LOTUS: Evasive and Resilient Backdoor Attacks through Sub-Partitioning
- Title(参考訳): LOTUS: サブパーティショニングによる広範かつレジリエントなバックドア攻撃
- Authors: Siyuan Cheng, Guanhong Tao, Yingqi Liu, Guangyu Shen, Shengwei An, Shiwei Feng, Xiangzhe Xu, Kaiyuan Zhang, Shiqing Ma, Xiangyu Zhang,
- Abstract要約: バックドア攻撃は、ディープラーニングアプリケーションに重大なセキュリティ脅威をもたらす。
近年の研究では、特殊な変換機能によって作られたサンプル特異的に見えないトリガーを用いた攻撃が導入されている。
我々は、回避性とレジリエンスの両方に対処するために、新しいバックドアアタックLOTUSを導入する。
- 参考スコア(独自算出の注目度): 49.174341192722615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Backdoor attack poses a significant security threat to Deep Learning applications. Existing attacks are often not evasive to established backdoor detection techniques. This susceptibility primarily stems from the fact that these attacks typically leverage a universal trigger pattern or transformation function, such that the trigger can cause misclassification for any input. In response to this, recent papers have introduced attacks using sample-specific invisible triggers crafted through special transformation functions. While these approaches manage to evade detection to some extent, they reveal vulnerability to existing backdoor mitigation techniques. To address and enhance both evasiveness and resilience, we introduce a novel backdoor attack LOTUS. Specifically, it leverages a secret function to separate samples in the victim class into a set of partitions and applies unique triggers to different partitions. Furthermore, LOTUS incorporates an effective trigger focusing mechanism, ensuring only the trigger corresponding to the partition can induce the backdoor behavior. Extensive experimental results show that LOTUS can achieve high attack success rate across 4 datasets and 7 model structures, and effectively evading 13 backdoor detection and mitigation techniques. The code is available at https://github.com/Megum1/LOTUS.
- Abstract(参考訳): バックドア攻撃は、ディープラーニングアプリケーションに重大なセキュリティ脅威をもたらす。
既存の攻撃はしばしば、確立されたバックドア検出技術を避けることはできない。
この感受性は、これらの攻撃が典型的には普遍的なトリガーパターンや変換関数を利用しており、トリガーが任意の入力に対して誤分類を引き起こす可能性があるという事実に起因している。
これに対応して、最近の論文では、特殊な変換機能を通じて作られたサンプル特異的な目に見えないトリガーを用いた攻撃を導入している。
これらのアプローチは検出をある程度回避するが、既存のバックドア緩和手法の脆弱性を明らかにする。
回避性とレジリエンスの両方に対処し,強化するために,新しいバックドアアタックLOTUSを導入する。
具体的には、シークレット関数を利用して、犠牲者クラスのサンプルをパーティションのセットに分離し、異なるパーティションにユニークなトリガを適用する。
さらに、LOTUSには効果的なトリガーフォーカス機構が組み込まれており、パーティションに対応するトリガーだけがバックドアの動作を誘発できる。
大規模な実験結果から、LOTUSは4つのデータセットと7つのモデル構造で高い攻撃成功率を達成でき、13のバックドア検出と緩和技術を効果的に回避できることが示された。
コードはhttps://github.com/Megum1/LOTUSで公開されている。
関連論文リスト
- Unlearn to Relearn Backdoors: Deferred Backdoor Functionality Attacks on Deep Learning Models [6.937795040660591]
バックドア攻撃の新たなパラダイムとして,Deferred Activated Backdoor Functionality (DABF)を紹介した。
従来の攻撃とは異なり、DABFは当初バックドアを隠蔽し、起動しても良質な出力を生成する。
DABF攻撃は、マシンラーニングモデルのライフサイクルで一般的なプラクティスを利用して、モデル更新と初期デプロイ後の微調整を実行する。
論文 参考訳(メタデータ) (2024-11-10T07:01:53Z) - NoiseAttack: An Evasive Sample-Specific Multi-Targeted Backdoor Attack Through White Gaussian Noise [0.19820694575112383]
ディープラーニング開発にサードパーティのデータを使用する場合、バックドア攻撃は重大な脅威となる。
我々は,新しいサンプル特異的なマルチターゲットバックドアアタック,すなわちNossAttackを紹介した。
この作業は、複数のターゲットクラスを生成する目的でビジョンバックドアアタックを起動する、この種の最初のものだ。
論文 参考訳(メタデータ) (2024-09-03T19:24:46Z) - Dual Model Replacement:invisible Multi-target Backdoor Attack based on Federal Learning [21.600003684064706]
本稿では,フェデレート学習に基づくバックドア攻撃手法を設計する。
バックドアトリガの隠蔽を目的としたエンコーダデコーダ構造を備えたトロイジャンガンステガノグラフィーモデルが設計されている。
フェデレート学習に基づく二重モデル置換バックドア攻撃アルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-04-22T07:44:02Z) - Shortcuts Everywhere and Nowhere: Exploring Multi-Trigger Backdoor Attacks [26.600846339400956]
ディープニューラルネットワーク(DNN)の事前トレーニングとデプロイに対して、バックドア攻撃は重大な脅威となっている。
本研究では,マルチトリガーバックドア攻撃(MTBA)の概念について検討し,複数の敵が異なる種類のトリガーを利用して同一のデータセットを毒する。
textitparallel, textitsequential, textithybrid 攻撃を含む3種類のマルチトリガー攻撃を提案し, 調査することにより, 1) 複数のトリガが共存し, オーバーライトし, 相互に作用し, 2) MTBAが容易に破壊できることが実証された。
論文 参考訳(メタデータ) (2024-01-27T04:49:37Z) - From Shortcuts to Triggers: Backdoor Defense with Denoised PoE [51.287157951953226]
言語モデルは、しばしば多様なバックドア攻撃、特にデータ中毒の危険にさらされる。
既存のバックドア防御手法は主に明示的なトリガーによるバックドア攻撃に焦点を当てている。
我々は,様々なバックドア攻撃を防御するために,エンド・ツー・エンドアンサンブルに基づくバックドア防御フレームワークDPoEを提案する。
論文 参考訳(メタデータ) (2023-05-24T08:59:25Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアアタックは、訓練段階の脅威を脅かしている。
軽度で目に見えないバックドアアタック(SIBA)を提案する。
論文 参考訳(メタデータ) (2023-05-11T10:05:57Z) - BATT: Backdoor Attack with Transformation-based Triggers [72.61840273364311]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアの敵は、敵が特定したトリガーパターンによって活性化される隠れたバックドアを注入する。
最近の研究によると、既存の攻撃のほとんどは現実世界で失敗した。
論文 参考訳(メタデータ) (2022-11-02T16:03:43Z) - Hidden Killer: Invisible Textual Backdoor Attacks with Syntactic Trigger [48.59965356276387]
本稿では,テキストバックドア攻撃の引き金として構文構造を用いることを提案する。
我々は、トリガーベースアタック法が同等のアタック性能を達成できることを示すため、広範囲な実験を行った。
また,本研究の結果から,テキストバックドア攻撃の重篤さと有害性も明らかとなった。
論文 参考訳(メタデータ) (2021-05-26T08:54:19Z) - Rethinking the Trigger of Backdoor Attack [83.98031510668619]
現在、既存のバックドア攻撃のほとんどは、トレーニングとテスト用の画像は同じ外観で、同じエリアに置かれている。
テスト画像のトリガーがトレーニングで使用されるものと一致していない場合、このような攻撃パラダイムが脆弱であることを示す。
論文 参考訳(メタデータ) (2020-04-09T17:19:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。