論文の概要: Unlearn to Relearn Backdoors: Deferred Backdoor Functionality Attacks on Deep Learning Models
- arxiv url: http://arxiv.org/abs/2411.14449v2
- Date: Mon, 25 Nov 2024 06:51:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:17:17.690279
- Title: Unlearn to Relearn Backdoors: Deferred Backdoor Functionality Attacks on Deep Learning Models
- Title(参考訳): 未学習のバックドア: 深層学習モデルにおけるバックドア機能攻撃の回避
- Authors: Jeongjin Shin, Sangdon Park,
- Abstract要約: バックドア攻撃の新たなパラダイムとして,Deferred Activated Backdoor Functionality (DABF)を紹介した。
従来の攻撃とは異なり、DABFは当初バックドアを隠蔽し、起動しても良質な出力を生成する。
DABF攻撃は、マシンラーニングモデルのライフサイクルで一般的なプラクティスを利用して、モデル更新と初期デプロイ後の微調整を実行する。
- 参考スコア(独自算出の注目度): 6.937795040660591
- License:
- Abstract: Deep learning models are vulnerable to backdoor attacks, where adversaries inject malicious functionality during training that activates on trigger inputs at inference time. Extensive research has focused on developing stealthy backdoor attacks to evade detection and defense mechanisms. However, these approaches still have limitations that leave the door open for detection and mitigation due to their inherent design to cause malicious behavior in the presence of a trigger. To address this limitation, we introduce Deferred Activated Backdoor Functionality (DABF), a new paradigm in backdoor attacks. Unlike conventional attacks, DABF initially conceals its backdoor, producing benign outputs even when triggered. This stealthy behavior allows DABF to bypass multiple detection and defense methods, remaining undetected during initial inspections. The backdoor functionality is strategically activated only after the model undergoes subsequent updates, such as retraining on benign data. DABF attacks exploit the common practice in the life cycle of machine learning models to perform model updates and fine-tuning after initial deployment. To implement DABF attacks, we approach the problem by making the unlearning of the backdoor fragile, allowing it to be easily cancelled and subsequently reactivate the backdoor functionality. To achieve this, we propose a novel two-stage training scheme, called DeferBad. Our extensive experiments across various fine-tuning scenarios, backdoor attack types, datasets, and model architectures demonstrate the effectiveness and stealthiness of DeferBad.
- Abstract(参考訳): ディープラーニングモデルはバックドア攻撃に対して脆弱で、敵はトレーニング中に悪意のある機能を注入し、推論時にトリガー入力を起動する。
大規模な研究は、検出と防御メカニズムを回避するためのステルスなバックドア攻撃の開発に焦点を当てている。
しかしながら、これらのアプローチには、トリガーの存在下で悪意ある振る舞いを引き起こす固有の設計のため、ドアを開いて検知と緩和する制限がある。
この制限に対処するために、バックドア攻撃の新しいパラダイムであるDeferred Activated Backdoor Functionality (DABF)を紹介する。
従来の攻撃とは異なり、DABFは当初バックドアを隠蔽し、起動しても良質な出力を生成する。
このステルスな振る舞いにより、DABFは初期検査中に検出されていない複数の検出と防御方法をバイパスすることができる。
バックドア機能は、良質なデータの再トレーニングなどの後続のアップデートを実行した後のみ、戦略的にアクティベートされる。
DABF攻撃は、マシンラーニングモデルのライフサイクルで一般的なプラクティスを利用して、モデル更新と初期デプロイ後の微調整を実行する。
DABF攻撃を実装するために,バックドアの脆弱性を未学習にすることで,簡単にキャンセルし,その後にバックドア機能を再活性化させることにより,この問題に対処する。
そこで本研究では,DeferBadと呼ばれる新しい2段階学習手法を提案する。
さまざまな微調整シナリオ、バックドアアタックタイプ、データセット、モデルアーキテクチャにわたる大規模な実験は、DeferBadの有効性とステルス性を示しています。
関連論文リスト
- Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
本稿では,機械学習という概念を用いて,バックドアの脅威に対する効果的な防御機構を提案する。
これは、モデルがバックドアの脆弱性を迅速に学習するのを助けるために、小さな毒のサンプルを戦略的に作成することを必要とする。
バックドア・アンラーニング・プロセスでは,新しいトークン・ベースの非ラーニング・トレーニング・システムを提案する。
論文 参考訳(メタデータ) (2024-09-29T02:55:38Z) - Diff-Cleanse: Identifying and Mitigating Backdoor Attacks in Diffusion Models [3.134071086568745]
拡散モデル(DM)は、今日では最も先進的な生成モデルの一つと見なされている。
近年の研究では、DMはバックドア攻撃に弱いことが示唆されている。
この脆弱性は、モデル所有者に評判を害するなど、重大なリスクをもたらす。
Diff-Cleanseは、DM用に特別に設計された2段階のバックドア防御フレームワークである。
論文 参考訳(メタデータ) (2024-07-31T03:54:41Z) - Mitigating Backdoor Attack by Injecting Proactive Defensive Backdoor [63.84477483795964]
データ中毒のバックドア攻撃は、機械学習モデルにとって深刻なセキュリティ上の脅威である。
本稿では,トレーニング中のバックドアディフェンスに着目し,データセットが有害になりうる場合でもクリーンなモデルをトレーニングすることを目的とした。
PDB(Proactive Defensive Backdoor)と呼ばれる新しい防衛手法を提案する。
論文 参考訳(メタデータ) (2024-05-25T07:52:26Z) - Exploiting Machine Unlearning for Backdoor Attacks in Deep Learning
System [4.9233610638625604]
マシンアンラーニングに基づく新しいブラックボックスバックドア攻撃を提案する。
攻撃者はまず、毒や緩和データを含む慎重に設計されたサンプルでトレーニングセットを強化し、良心のモデルを訓練する。
そして、攻撃者は、モデルの関連するデータの影響を取り除くために、未学習のサンプルに対するリクエストをポストし、徐々に隠れたバックドアを活性化する。
論文 参考訳(メタデータ) (2023-09-12T02:42:39Z) - Rethinking Backdoor Attacks [122.1008188058615]
バックドア攻撃では、悪意ある構築されたバックドアの例をトレーニングセットに挿入し、結果のモデルを操作に脆弱にする。
このような攻撃に対する防御は、典型的には、これらの挿入された例をトレーニングセットの外れ値として見ることと、堅牢な統計からのテクニックを使用してそれらを検出し、削除することである。
トレーニングデータ分布に関する構造情報がなければ,バックドア攻撃は自然に発生するデータの特徴と区別できないことを示す。
論文 参考訳(メタデータ) (2023-07-19T17:44:54Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアアタックは、訓練段階の脅威を脅かしている。
軽度で目に見えないバックドアアタック(SIBA)を提案する。
論文 参考訳(メタデータ) (2023-05-11T10:05:57Z) - Universal Soldier: Using Universal Adversarial Perturbations for
Detecting Backdoor Attacks [15.917794562400449]
ディープラーニングモデルは、バックドアデータによるトレーニングや、内部ネットワークパラメータの変更によって悪用される。
引き金について事前に知ることなく、クリーンモデルとバックドアモデルとを区別することは困難である。
UAPによるバックドア検出(USB)とリバースエンジニアリング潜在的なバックドアトリガのためのUniversal Soldierという新しい手法を提案する。
論文 参考訳(メタデータ) (2023-02-01T20:47:58Z) - Check Your Other Door! Establishing Backdoor Attacks in the Frequency
Domain [80.24811082454367]
検出不能で強力なバックドア攻撃を確立するために周波数領域を利用する利点を示す。
また、周波数ベースのバックドア攻撃を成功させる2つの防御方法と、攻撃者がそれらを回避できる可能性を示す。
論文 参考訳(メタデータ) (2021-09-12T12:44:52Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
モデルへのクエリアクセスのみを用いてバックドア攻撃を同定するブラックボックスバックドア検出(B3D)手法を提案する。
バックドア検出に加えて,同定されたバックドアモデルを用いた信頼性の高い予測手法を提案する。
論文 参考訳(メタデータ) (2021-03-24T12:06:40Z) - WaNet -- Imperceptible Warping-based Backdoor Attack [20.289889150949836]
サードパーティーのモデルは、通常の状況でうまく機能するようにトレーニング中に毒を盛るが、トリガーパターンが現れると悪質に振る舞う。
本稿では,サードパーティモデルに対してワーピングベースのトリガーを用いた攻撃手法を提案する。
提案したバックドアは、人間の検査試験における従来の方法よりも広いマージンで優れており、そのステルス性を証明している。
論文 参考訳(メタデータ) (2021-02-20T15:25:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。