Exploring CausalWorld: Enhancing robotic manipulation via knowledge transfer and curriculum learning
- URL: http://arxiv.org/abs/2403.17266v1
- Date: Mon, 25 Mar 2024 23:19:19 GMT
- Title: Exploring CausalWorld: Enhancing robotic manipulation via knowledge transfer and curriculum learning
- Authors: Xinrui Wang, Yan Jin,
- Abstract summary: This study explores a learning-based tri-finger robotic arm manipulating task, which requires complex movements and coordination among the fingers.
By employing reinforcement learning, we train an agent to acquire the necessary skills for proficient manipulation.
Two knowledge transfer strategies, fine-tuning and curriculum learning, were utilized within the soft actor-critic architecture.
- Score: 6.683222869973898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study explores a learning-based tri-finger robotic arm manipulating task, which requires complex movements and coordination among the fingers. By employing reinforcement learning, we train an agent to acquire the necessary skills for proficient manipulation. To enhance the efficiency and effectiveness of the learning process, two knowledge transfer strategies, fine-tuning and curriculum learning, were utilized within the soft actor-critic architecture. Fine-tuning allows the agent to leverage pre-trained knowledge and adapt it to new tasks. Several variations like model transfer, policy transfer, and across-task transfer were implemented and evaluated. To eliminate the need for pretraining, curriculum learning decomposes the advanced task into simpler, progressive stages, mirroring how humans learn. The number of learning stages, the context of the sub-tasks, and the transition timing were found to be the critical design parameters. The key factors of two learning strategies and corresponding effects were explored in context-aware and context-unaware scenarios, enabling us to identify the scenarios where the methods demonstrate optimal performance, derive conclusive insights, and contribute to a broader range of learning-based engineering applications.
Related papers
- Semantic-Geometric-Physical-Driven Robot Manipulation Skill Transfer via Skill Library and Tactile Representation [6.324290412766366]
skill library framework based on knowledge graphs endows robots with high-level skill awareness and spatial semantic understanding.
At the motion level, an adaptive trajectory transfer method is developed using the A* algorithm and the skill library.
At the physical level, we introduce an adaptive contour extraction and posture perception method based on tactile perception.
arXiv Detail & Related papers (2024-11-18T16:42:07Z) - SPIRE: Synergistic Planning, Imitation, and Reinforcement Learning for Long-Horizon Manipulation [58.14969377419633]
We propose spire, a system that decomposes tasks into smaller learning subproblems and second combines imitation and reinforcement learning to maximize their strengths.
We find that spire outperforms prior approaches that integrate imitation learning, reinforcement learning, and planning by 35% to 50% in average task performance.
arXiv Detail & Related papers (2024-10-23T17:42:07Z) - REVEAL-IT: REinforcement learning with Visibility of Evolving Agent poLicy for InTerpretability [23.81322529587759]
REVEAL-IT is a novel framework for explaining the learning process of an agent in complex environments.
We visualize the policy structure and the agent's learning process for various training tasks.
A GNN-based explainer learns to highlight the most important section of the policy, providing a more clear and robust explanation of the agent's learning process.
arXiv Detail & Related papers (2024-06-20T11:29:26Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Learning and Retrieval from Prior Data for Skill-based Imitation
Learning [47.59794569496233]
We develop a skill-based imitation learning framework that extracts temporally extended sensorimotor skills from prior data.
We identify several key design choices that significantly improve performance on novel tasks.
arXiv Detail & Related papers (2022-10-20T17:34:59Z) - Rethinking Learning Dynamics in RL using Adversarial Networks [79.56118674435844]
We present a learning mechanism for reinforcement learning of closely related skills parameterized via a skill embedding space.
The main contribution of our work is to formulate an adversarial training regime for reinforcement learning with the help of entropy-regularized policy gradient formulation.
arXiv Detail & Related papers (2022-01-27T19:51:09Z) - Intrinsically Motivated Open-Ended Multi-Task Learning Using Transfer
Learning to Discover Task Hierarchy [0.0]
In open-ended continuous environments, robots need to learn multiple parameterised control tasks in hierarchical reinforcement learning.
We show that the most complex tasks can be learned more easily by transferring knowledge from simpler tasks, and faster by adapting the complexity of the actions to the task.
We propose a task-oriented representation of complex actions, called procedures, to learn online task relationships and unbounded sequences of action primitives to control the different observables of the environment.
arXiv Detail & Related papers (2021-02-19T10:44:08Z) - Active Hierarchical Imitation and Reinforcement Learning [0.0]
In this project, we explored different imitation learning algorithms and designed active learning algorithms upon the hierarchical imitation and reinforcement learning framework we have developed.
Our experimental results showed that using DAgger and reward-based active learning method can achieve better performance while saving more human efforts physically and mentally during the training process.
arXiv Detail & Related papers (2020-12-14T08:27:27Z) - Language-guided Navigation via Cross-Modal Grounding and Alternate
Adversarial Learning [66.9937776799536]
The emerging vision-and-language navigation (VLN) problem aims at learning to navigate an agent to the target location in unseen photo-realistic environments.
The main challenges of VLN arise mainly from two aspects: first, the agent needs to attend to the meaningful paragraphs of the language instruction corresponding to the dynamically-varying visual environments.
We propose a cross-modal grounding module to equip the agent with a better ability to track the correspondence between the textual and visual modalities.
arXiv Detail & Related papers (2020-11-22T09:13:46Z) - Measuring and Harnessing Transference in Multi-Task Learning [58.48659733262734]
Multi-task learning can leverage information learned by one task to benefit the training of other tasks.
We analyze the dynamics of information transfer, or transference, across tasks throughout training.
arXiv Detail & Related papers (2020-10-29T08:25:43Z) - Transfer Learning in Deep Reinforcement Learning: A Survey [64.36174156782333]
Reinforcement learning is a learning paradigm for solving sequential decision-making problems.
Recent years have witnessed remarkable progress in reinforcement learning upon the fast development of deep neural networks.
transfer learning has arisen to tackle various challenges faced by reinforcement learning.
arXiv Detail & Related papers (2020-09-16T18:38:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.