REVEAL-IT: REinforcement learning with Visibility of Evolving Agent poLicy for InTerpretability
- URL: http://arxiv.org/abs/2406.14214v6
- Date: Mon, 14 Oct 2024 12:08:29 GMT
- Title: REVEAL-IT: REinforcement learning with Visibility of Evolving Agent poLicy for InTerpretability
- Authors: Shuang Ao, Simon Khan, Haris Aziz, Flora D. Salim,
- Abstract summary: REVEAL-IT is a novel framework for explaining the learning process of an agent in complex environments.
We visualize the policy structure and the agent's learning process for various training tasks.
A GNN-based explainer learns to highlight the most important section of the policy, providing a more clear and robust explanation of the agent's learning process.
- Score: 23.81322529587759
- License:
- Abstract: Understanding the agent's learning process, particularly the factors that contribute to its success or failure post-training, is crucial for comprehending the rationale behind the agent's decision-making process. Prior methods clarify the learning process by creating a structural causal model (SCM) or visually representing the distribution of value functions. Nevertheless, these approaches have constraints as they exclusively function in 2D-environments or with uncomplicated transition dynamics. Understanding the agent's learning process in complicated environments or tasks is more challenging. In this paper, we propose REVEAL-IT, a novel framework for explaining the learning process of an agent in complex environments. Initially, we visualize the policy structure and the agent's learning process for various training tasks. By visualizing these findings, we can understand how much a particular training task or stage affects the agent's performance in test. Then, a GNN-based explainer learns to highlight the most important section of the policy, providing a more clear and robust explanation of the agent's learning process. The experiments demonstrate that explanations derived from this framework can effectively help in the optimization of the training tasks, resulting in improved learning efficiency and final performance.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Watch Every Step! LLM Agent Learning via Iterative Step-Level Process Refinement [50.481380478458945]
Iterative step-level Process Refinement (IPR) framework provides detailed step-by-step guidance to enhance agent training.
Our experiments on three complex agent tasks demonstrate that our framework outperforms a variety of strong baselines.
arXiv Detail & Related papers (2024-06-17T03:29:13Z) - Exploring CausalWorld: Enhancing robotic manipulation via knowledge transfer and curriculum learning [6.683222869973898]
This study explores a learning-based tri-finger robotic arm manipulating task, which requires complex movements and coordination among the fingers.
By employing reinforcement learning, we train an agent to acquire the necessary skills for proficient manipulation.
Two knowledge transfer strategies, fine-tuning and curriculum learning, were utilized within the soft actor-critic architecture.
arXiv Detail & Related papers (2024-03-25T23:19:19Z) - Explaining Agent's Decision-making in a Hierarchical Reinforcement
Learning Scenario [0.6643086804649938]
Reinforcement learning is a machine learning approach based on behavioral psychology.
In this work, we make use of the memory-based explainable reinforcement learning method in a hierarchical environment composed of sub-tasks.
arXiv Detail & Related papers (2022-12-14T01:18:45Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
We show how to develop interpretable representations of how agents make decisions.
By understanding the decision-making processes underlying a set of observed trajectories, we cast the policy inference problem as the inverse to this online learning problem.
We introduce a practical algorithm for retrospectively estimating such perceived effects, alongside the process through which agents update them.
Through application to the analysis of UNOS organ donation acceptance decisions, we demonstrate that our approach can bring valuable insights into the factors that govern decision processes and how they change over time.
arXiv Detail & Related papers (2022-03-14T17:40:42Z) - Reinforcement Learning with Prototypical Representations [114.35801511501639]
Proto-RL is a self-supervised framework that ties representation learning with exploration through prototypical representations.
These prototypes simultaneously serve as a summarization of the exploratory experience of an agent as well as a basis for representing observations.
This enables state-of-the-art downstream policy learning on a set of difficult continuous control tasks.
arXiv Detail & Related papers (2021-02-22T18:56:34Z) - Importance Weighted Policy Learning and Adaptation [89.46467771037054]
We study a complementary approach which is conceptually simple, general, modular and built on top of recent improvements in off-policy learning.
The framework is inspired by ideas from the probabilistic inference literature and combines robust off-policy learning with a behavior prior.
Our approach achieves competitive adaptation performance on hold-out tasks compared to meta reinforcement learning baselines and can scale to complex sparse-reward scenarios.
arXiv Detail & Related papers (2020-09-10T14:16:58Z) - Human AI interaction loop training: New approach for interactive
reinforcement learning [0.0]
Reinforcement Learning (RL) in various decision-making tasks of machine learning provides effective results with an agent learning from a stand-alone reward function.
RL presents unique challenges with large amounts of environment states and action spaces, as well as in the determination of rewards.
Imitation Learning (IL) offers a promising solution for those challenges using a teacher.
arXiv Detail & Related papers (2020-03-09T15:27:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.