Semantic-Geometric-Physical-Driven Robot Manipulation Skill Transfer via Skill Library and Tactile Representation
- URL: http://arxiv.org/abs/2411.11714v1
- Date: Mon, 18 Nov 2024 16:42:07 GMT
- Title: Semantic-Geometric-Physical-Driven Robot Manipulation Skill Transfer via Skill Library and Tactile Representation
- Authors: Mingchao Qi, Yuanjin Li, Xing Liu, Zhengxiong Liu, Panfeng Huang,
- Abstract summary: skill library framework based on knowledge graphs endows robots with high-level skill awareness and spatial semantic understanding.
At the motion level, an adaptive trajectory transfer method is developed using the A* algorithm and the skill library.
At the physical level, we introduce an adaptive contour extraction and posture perception method based on tactile perception.
- Score: 6.324290412766366
- License:
- Abstract: Deploying robots in open-world environments involves complex tasks characterized by long sequences and rich interactions, necessitating efficient transfer of robotic skills across diverse and complex scenarios. To address this challenge, we propose a skill library framework based on knowledge graphs, which endows robots with high-level skill awareness and spatial semantic understanding. The framework hierarchically organizes operational knowledge by constructing a "task graph" and a "scene graph" to represent task and scene semantic information, respectively. We introduce a "state graph" to facilitate interaction between high-level task planning and low-level scene information. Furthermore, we propose a hierarchical transfer framework for operational skills. At the task level, the framework integrates contextual learning and chain-of-thought prompting within a four-stage prompt paradigm, leveraging large language models' (LLMs) reasoning and generalization capabilities to achieve task-level subtask sequence transfer. At the motion level, an adaptive trajectory transfer method is developed using the A* algorithm and the skill library, enabling motion-level adaptive trajectory transfer. At the physical level, we introduce an adaptive contour extraction and posture perception method based on tactile perception. This method dynamically obtains high-precision contour and posture information from visual-tactile texture data and adjusts transferred skills, such as contact positions and postures, to ensure effectiveness in new environments. Experimental results validate the effectiveness of the proposed methods. Project website:https://github.com/MingchaoQi/skill_transfer
Related papers
- Flex: End-to-End Text-Instructed Visual Navigation with Foundation Models [59.892436892964376]
We investigate the minimal data requirements and architectural adaptations necessary to achieve robust closed-loop performance with vision-based control policies.
Our findings are synthesized in Flex (Fly-lexically), a framework that uses pre-trained Vision Language Models (VLMs) as frozen patch-wise feature extractors.
We demonstrate the effectiveness of this approach on quadrotor fly-to-target tasks, where agents trained via behavior cloning successfully generalize to real-world scenes.
arXiv Detail & Related papers (2024-10-16T19:59:31Z) - Trustworthy Image Semantic Communication with GenAI: Explainablity, Controllability, and Efficiency [59.15544887307901]
Image semantic communication (ISC) has garnered significant attention for its potential to achieve high efficiency in visual content transmission.
Existing ISC systems based on joint source-channel coding face challenges in interpretability, operability, and compatibility.
We propose a novel trustworthy ISC framework that employs Generative Artificial Intelligence (GenAI) for multiple downstream inference tasks.
arXiv Detail & Related papers (2024-08-07T14:32:36Z) - Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
This paper explores the domain of active localization, emphasizing the importance of viewpoint selection to enhance localization accuracy.
Our contributions involve using a data-driven approach with a simple architecture designed for real-time operation, a self-supervised data training method, and the capability to consistently integrate our map into a planning framework tailored for real-world robotics applications.
arXiv Detail & Related papers (2024-07-22T12:32:09Z) - Exploring CausalWorld: Enhancing robotic manipulation via knowledge transfer and curriculum learning [6.683222869973898]
This study explores a learning-based tri-finger robotic arm manipulating task, which requires complex movements and coordination among the fingers.
By employing reinforcement learning, we train an agent to acquire the necessary skills for proficient manipulation.
Two knowledge transfer strategies, fine-tuning and curriculum learning, were utilized within the soft actor-critic architecture.
arXiv Detail & Related papers (2024-03-25T23:19:19Z) - SkillDiffuser: Interpretable Hierarchical Planning via Skill Abstractions in Diffusion-Based Task Execution [75.2573501625811]
Diffusion models have demonstrated strong potential for robotic trajectory planning.
generating coherent trajectories from high-level instructions remains challenging.
We propose SkillDiffuser, an end-to-end hierarchical planning framework.
arXiv Detail & Related papers (2023-12-18T18:16:52Z) - RT-Trajectory: Robotic Task Generalization via Hindsight Trajectory
Sketches [74.300116260004]
Generalization remains one of the most important desiderata for robust robot learning systems.
We propose a policy conditioning method using rough trajectory sketches.
We show that RT-Trajectory is able to perform a wider range of tasks compared to language-conditioned and goal-conditioned policies.
arXiv Detail & Related papers (2023-11-03T15:31:51Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
We formulate it as a few-shot reinforcement learning problem where a task is characterized by a subtask graph.
Our multi-task subtask graph inferencer (MTSGI) first infers the common high-level task structure in terms of the subtask graph from the training tasks.
Our experiment results on 2D grid-world and complex web navigation domains show that the proposed method can learn and leverage the common underlying structure of the tasks for faster adaptation to the unseen tasks.
arXiv Detail & Related papers (2022-05-25T10:44:25Z) - Learning Transferable Motor Skills with Hierarchical Latent Mixture
Policies [37.09286945259353]
We propose an approach to learn abstract motor skills from data using a hierarchical mixture latent variable model.
We demonstrate in manipulation domains that the method can effectively cluster offline data into distinct, executable behaviours.
arXiv Detail & Related papers (2021-12-09T17:37:14Z) - Intrinsically Motivated Open-Ended Multi-Task Learning Using Transfer
Learning to Discover Task Hierarchy [0.0]
In open-ended continuous environments, robots need to learn multiple parameterised control tasks in hierarchical reinforcement learning.
We show that the most complex tasks can be learned more easily by transferring knowledge from simpler tasks, and faster by adapting the complexity of the actions to the task.
We propose a task-oriented representation of complex actions, called procedures, to learn online task relationships and unbounded sequences of action primitives to control the different observables of the environment.
arXiv Detail & Related papers (2021-02-19T10:44:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.