Learn from Heterophily: Heterophilous Information-enhanced Graph Neural Network
- URL: http://arxiv.org/abs/2403.17351v2
- Date: Tue, 12 Nov 2024 09:46:25 GMT
- Title: Learn from Heterophily: Heterophilous Information-enhanced Graph Neural Network
- Authors: Yilun Zheng, Jiahao Xu, Lihui Chen,
- Abstract summary: Heterophily, nodes with different labels tend to be connected based on semantic meanings, Graph Neural Networks (GNNs) often exhibit suboptimal performance.
We propose and demonstrate that the valuable semantic information inherent in heterophily can be utilized effectively in graph learning.
We propose HiGNN, an innovative approach that constructs an additional new graph structure, that integrates heterophilous information by leveraging node distribution.
- Score: 4.078409998614025
- License:
- Abstract: Under circumstances of heterophily, where nodes with different labels tend to be connected based on semantic meanings, Graph Neural Networks (GNNs) often exhibit suboptimal performance. Current studies on graph heterophily mainly focus on aggregation calibration or neighbor extension and address the heterophily issue by utilizing node features or structural information to improve GNN representations. In this paper, we propose and demonstrate that the valuable semantic information inherent in heterophily can be utilized effectively in graph learning by investigating the distribution of neighbors for each individual node within the graph. The theoretical analysis is carried out to demonstrate the efficacy of the idea in enhancing graph learning. Based on this analysis, we propose HiGNN, an innovative approach that constructs an additional new graph structure, that integrates heterophilous information by leveraging node distribution to enhance connectivity between nodes that share similar semantic characteristics. We conduct empirical assessments on node classification tasks using both homophilous and heterophilous benchmark datasets and compare HiGNN to popular GNN baselines and SoTA methods, confirming the effectiveness in improving graph representations. In addition, by incorporating heterophilous information, we demonstrate a notable enhancement in existing GNN-based approaches, and the homophily degree across real-world datasets, thus affirming the efficacy of our approach.
Related papers
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Design Your Own Universe: A Physics-Informed Agnostic Method for Enhancing Graph Neural Networks [34.16727363891593]
We propose a model-agnostic enhancement framework for Graph Neural Networks (GNNs)
This framework enriches the graph structure by introducing additional nodes and rewiring connections with both positive and negative weights.
We theoretically verify that GNNs enhanced through our approach can effectively circumvent the over-smoothing issue and exhibit robustness against over-squashing.
Empirical validations on benchmarks for homophilic, heterophilic graphs, and long-term graph datasets show that GNNs enhanced by our method significantly outperform their original counterparts.
arXiv Detail & Related papers (2024-01-26T00:47:43Z) - Breaking the Entanglement of Homophily and Heterophily in
Semi-supervised Node Classification [25.831508778029097]
We introduce AMUD, which quantifies the relationship between node profiles and topology from a statistical perspective.
We also propose ADPA as a new directed graph learning paradigm for AMUD.
arXiv Detail & Related papers (2023-12-07T07:54:11Z) - Evolving Computation Graphs [20.094508902123778]
Graph neural networks (GNNs) have demonstrated success in modeling relational data, especially for data that exhibits homophily.
We propose Evolving Computation Graphs (ECGs), a novel method for enhancing GNNs on heterophilic datasets.
arXiv Detail & Related papers (2023-06-22T14:58:18Z) - Demystifying Structural Disparity in Graph Neural Networks: Can One Size
Fit All? [61.35457647107439]
Most real-world homophilic and heterophilic graphs are comprised of a mixture of nodes in both homophilic and heterophilic structural patterns.
We provide evidence that Graph Neural Networks(GNNs) on node classification typically perform admirably on homophilic nodes.
We then propose a rigorous, non-i.i.d PAC-Bayesian generalization bound for GNNs, revealing reasons for the performance disparity.
arXiv Detail & Related papers (2023-06-02T07:46:20Z) - Heterophily-Aware Graph Attention Network [42.640057865981156]
Graph Neural Networks (GNNs) have shown remarkable success in graph representation learning.
Existing heterophilic GNNs tend to ignore the modeling of heterophily of each edge, which is also a vital part in tackling the heterophily problem.
We propose a novel Heterophily-Aware Graph Attention Network (HA-GAT) by fully exploring and utilizing the local distribution as the underlying heterophily.
arXiv Detail & Related papers (2023-02-07T03:21:55Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
We provide a comprehensive review of graph neural networks (GNNs) for heterophilic graphs.
Specifically, we propose a systematic taxonomy that essentially governs existing heterophilic GNN models.
We discuss the correlation between graph heterophily and various graph research domains, aiming to facilitate the development of more effective GNNs.
arXiv Detail & Related papers (2022-02-14T23:07:47Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
graph neural networks (GNNs) have greatly advanced the performance of node representation learning on graphs.
A majority class of GNNs are only designed for homogeneous graphs, leading to inferior adaptivity to the more informative heterogeneous graphs.
We propose a novel inductive, meta path-free message passing scheme that packs up heterogeneous node features with their associated edges from both low- and high-order neighbor nodes.
arXiv Detail & Related papers (2021-04-04T23:31:39Z) - Adaptive Universal Generalized PageRank Graph Neural Network [36.850433364139924]
Graph neural networks (GNNs) are designed to exploit both sources of evidence but they do not optimally trade-off their utility.
We introduce a new Generalized PageRank (GPR) GNN architecture that adaptively learns the GPR weights.
GPR-GNN offers significant performance improvement compared to existing techniques on both synthetic and benchmark data.
arXiv Detail & Related papers (2020-06-14T19:27:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.