論文の概要: Multi-Objective Trajectory Planning with Dual-Encoder
- arxiv url: http://arxiv.org/abs/2403.17353v1
- Date: Tue, 26 Mar 2024 03:32:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 16:45:50.196163
- Title: Multi-Objective Trajectory Planning with Dual-Encoder
- Title(参考訳): デュアルエンコーダを用いた多目的軌道計画
- Authors: Beibei Zhang, Tian Xiang, Chentao Mao, Yuhua Zheng, Shuai Li, Haoyi Niu, Xiangming Xi, Wenyuan Bai, Feng Gao,
- Abstract要約: 時空最適軌道計画は、動的タスクにおけるロボットアームの性能向上に不可欠である。
従来の手法は複雑な非線形プログラミング問題を解くことに依存している。
時空最適軌道計画の高速化のための2段階の手法を提案する。
- 参考スコア(独自算出の注目度): 8.414908539114743
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time-jerk optimal trajectory planning is crucial in advancing robotic arms' performance in dynamic tasks. Traditional methods rely on solving complex nonlinear programming problems, bringing significant delays in generating optimized trajectories. In this paper, we propose a two-stage approach to accelerate time-jerk optimal trajectory planning. Firstly, we introduce a dual-encoder based transformer model to establish a good preliminary trajectory. This trajectory is subsequently refined through sequential quadratic programming to improve its optimality and robustness. Our approach outperforms the state-of-the-art by up to 79.72\% in reducing trajectory planning time. Compared with existing methods, our method shrinks the optimality gap with the objective function value decreasing by up to 29.9\%.
- Abstract(参考訳): 時空最適軌道計画は、動的タスクにおけるロボットアームの性能向上に不可欠である。
従来の手法は複雑な非線形プログラミング問題を解くことに依存しており、最適化された軌道を生成するのにかなりの遅延をもたらす。
本稿では,時空最適軌道計画の高速化のための2段階の手法を提案する。
まず,デュアルエンコーダをベースとしたトランスモデルを導入し,良好な予備軌道を確立する。
この軌道はその後、その最適性と堅牢性を改善するためにシーケンシャルな二次計画によって洗練される。
提案手法は,軌道計画時間を最大79.72倍に短縮する。
従来の手法と比較して,目的関数値が最大29.9\%減少するにつれて,最適性ギャップを小さくする。
関連論文リスト
- Towards Robust Spacecraft Trajectory Optimization via Transformers [17.073280827888226]
将来の多機のミッションでは、安全かつ効率的なランデブー操作を確保するために、堅牢な自律的な最適化機能が必要である。
この負担を軽減するため、生成トランスフォーマーモデルを導入し、ロバストな最適初期推定を提供する。
この研究はARTの機能を拡張し、堅牢な制約付き最適制御問題に対処する。
論文 参考訳(メタデータ) (2024-10-08T00:58:42Z) - Shadow Program Inversion with Differentiable Planning: A Framework for Unified Robot Program Parameter and Trajectory Optimization [6.890628942323211]
SPI-DPはロボットプログラムのための新しい一階最適化手法である。
直列N-DoFキネマティクスのための衝突のない運動プランナDGPMP2-NDを紹介する。
我々は,2つの実用的・産業的応用に関する総合的な評価を行う。
論文 参考訳(メタデータ) (2024-09-13T09:46:41Z) - Diffusion Models as Optimizers for Efficient Planning in Offline RL [47.0835433289033]
拡散モデルはオフラインの強化学習タスクにおいて強い競争力を示している。
本稿では,より高速な自己回帰モデルを提案する。
これにより、能力を犠牲にすることなく、より効率的な計画を達成することができます。
論文 参考訳(メタデータ) (2024-07-23T03:00:01Z) - Trajectory-Based Multi-Objective Hyperparameter Optimization for Model Retraining [8.598456741786801]
本稿では,新しいトラジェクトリベース多目的ベイズ最適化アルゴリズムを提案する。
我々のアルゴリズムは、より優れたトレードオフとチューニング効率の両面において、最先端のマルチオブジェクトよりも優れています。
論文 参考訳(メタデータ) (2024-05-24T07:43:45Z) - An Efficient Learning-based Solver Comparable to Metaheuristics for the
Capacitated Arc Routing Problem [67.92544792239086]
我々は,高度メタヒューリスティックスとのギャップを著しく狭めるため,NNベースの解法を導入する。
まず,方向対応型注意モデル(DaAM)を提案する。
第2に、教師付き事前学習を伴い、堅牢な初期方針を確立するための教師付き強化学習スキームを設計する。
論文 参考訳(メタデータ) (2024-03-11T02:17:42Z) - Locally Optimal Descent for Dynamic Stepsize Scheduling [45.6809308002043]
本稿では,段階的スケジュールのマニュアルと時間的チューニングを簡略化することを目的とした,理論に基づく新しい動的学習スケジューリング手法を提案する。
本手法は,スムーズな勾配方向の局所最適練習速度を推定することに基づく。
提案手法は,既存手法と比較して最小限のチューニングが必要であることが示唆された。
論文 参考訳(メタデータ) (2023-11-23T09:57:35Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Time-Optimal Planning for Quadrotor Waypoint Flight [50.016821506107455]
立方体の作動限界における時間-最適軌道の計画は未解決の問題である。
四重項のアクチュエータポテンシャルをフル活用する解を提案する。
我々は、世界最大規模のモーションキャプチャーシステムにおいて、実世界の飛行における我々の方法を検証する。
論文 参考訳(メタデータ) (2021-08-10T09:26:43Z) - Autonomous Drone Racing with Deep Reinforcement Learning [39.757652701917166]
ドローンレースのような多くのロボットタスクにおいて、ゴールはできるだけ速くコースポイントを移動することである。
重要な課題は、事前に通過するウェイポイントの完全な知識を想定して解決される最小時間軌道を計画することです。
本研究では,クワッドロータの最小時間軌道生成法を提案する。
論文 参考訳(メタデータ) (2021-03-15T18:05:49Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - Adversarial Generation of Informative Trajectories for Dynamics System
Identification [3.664687661363732]
制御パラメータと慣性パラメータ空間の両方で異なる励起トラジェクトリを生成する方法を示す。
これは、複数の循環軌道を持つシステム識別を探索する最初のロボティクスである。
また、データセットの生成速度と品質を高めることにより、このアプローチをさらに拡張する方法を示す。
論文 参考訳(メタデータ) (2020-03-02T21:09:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。