論文の概要: SSF3D: Strict Semi-Supervised 3D Object Detection with Switching Filter
- arxiv url: http://arxiv.org/abs/2403.17390v1
- Date: Tue, 26 Mar 2024 05:19:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 16:36:05.455186
- Title: SSF3D: Strict Semi-Supervised 3D Object Detection with Switching Filter
- Title(参考訳): SSF3D:スイッチングフィルタを用いたSSF3D半監督3次元物体検出
- Authors: Songbur Wong,
- Abstract要約: SSF3Dは、ポイントクラウドデータ用に特別に設計された半教師付き3Dオブジェクト検出(SS3DOD)フレームワークを変更した。
我々は,偽ラベルの量と品質のバランスを追求する代わりに,真偽ラベルのみを保持し,他のファジィラベルをポイントでトリミングする戦略を採用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: SSF3D modified the semi-supervised 3D object detection (SS3DOD) framework, which designed specifically for point cloud data. Leveraging the characteristics of non-coincidence and weak correlation of target objects in point cloud, we adopt a strategy of retaining only the truth-determining pseudo labels and trimming the other fuzzy labels with points, instead of pursuing a balance between the quantity and quality of pseudo labels. Besides, we notice that changing the filter will make the model meet different distributed targets, which is beneficial to break the training bottleneck. Two mechanism are introduced to achieve above ideas: strict threshold and filter switching. The experiments are conducted to analyze the effectiveness of above approaches and their impact on the overall performance of the system. Evaluating on the KITTI dataset, SSF3D exhibits superior performance compared to the current state-of-the-art methods. The code will be released here.
- Abstract(参考訳): SSF3Dは、ポイントクラウドデータ用に特別に設計された半教師付き3Dオブジェクト検出(SS3DOD)フレームワークを変更した。
点雲における対象物体の非衝突特性と弱相関性を利用して、擬似ラベルの量と品質のバランスを追求する代わりに、真偽ラベルのみを保持し、他のファジィラベルをポイントでトリミングする戦略を採用する。
さらに、フィルタを変更することで、モデルを異なる分散ターゲットに適合させることができることに気付き、トレーニングボトルネックを壊すのに役立ちます。
以上のアイデアを実現するために、厳密なしきい値とフィルタスイッチングという2つのメカニズムが導入された。
以上の手法の有効性とシステム全体の性能への影響を明らかにする実験を行った。
KITTIデータセットから評価すると、SSF3Dは現在の最先端手法よりも優れたパフォーマンスを示している。
コードはここでリリースされる。
関連論文リスト
- Approaching Outside: Scaling Unsupervised 3D Object Detection from 2D Scene [22.297964850282177]
教師なし3次元検出のためのLiDAR-2D Self-paced Learning (LiSe)を提案する。
RGB画像は、正確な2Dローカライゼーションキューを提供するLiDARデータの貴重な補完となる。
本フレームワークでは,適応型サンプリングと弱いモデルアグリゲーション戦略を組み込んだ自己評価学習パイプラインを考案する。
論文 参考訳(メタデータ) (2024-07-11T14:58:49Z) - Revisiting Domain-Adaptive 3D Object Detection by Reliable, Diverse and
Class-balanced Pseudo-Labeling [38.07637524378327]
ドメイン適応型3Dオブジェクト検出において,疑似ラベリング技術を用いた教師なしドメイン適応(DA)が重要なアプローチとして浮上している。
既存のDAメソッドは、マルチクラスのトレーニング環境に適用した場合、パフォーマンスが大幅に低下する。
本稿では,すべてのクラスを一度に検出する学習に適した新しいReDBフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-16T04:34:11Z) - Augment and Criticize: Exploring Informative Samples for Semi-Supervised
Monocular 3D Object Detection [64.65563422852568]
我々は、一般的な半教師付きフレームワークを用いて、難解な単分子3次元物体検出問題を改善する。
我々は、ラベルのないデータから豊富な情報的サンプルを探索する、新しい、シンプルで効果的なAugment and Criticize'フレームワークを紹介します。
3DSeMo_DLEと3DSeMo_FLEXと呼ばれる2つの新しい検出器は、KITTIのAP_3D/BEV(Easy)を3.5%以上改善した。
論文 参考訳(メタデータ) (2023-03-20T16:28:15Z) - ST3D++: Denoised Self-training for Unsupervised Domain Adaptation on 3D
Object Detection [78.71826145162092]
本稿では,ST3D++という名前の自己学習手法を提案する。
擬似ラベル生成プロセスにハイブリット品質を意識した三重項メモリを組み込むことにより、生成された擬似ラベルの品質と安定性を向上させる。
モデルトレーニングの段階では、ソースデータ支援トレーニング戦略とカリキュラムデータ拡張ポリシーを提案する。
論文 参考訳(メタデータ) (2021-08-15T07:49:06Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
点雲からの3次元物体検出における教師なし領域適応のための新しい領域適応型自己学習パイプラインST3Dを提案する。
当社のST3Dは、評価されたすべてのデータセットで最先端のパフォーマンスを達成し、KITTI 3Dオブジェクト検出ベンチマークで完全に監視された結果を超えます。
論文 参考訳(メタデータ) (2021-03-09T10:51:24Z) - 3DIoUMatch: Leveraging IoU Prediction for Semi-Supervised 3D Object
Detection [76.42897462051067]
3DIoUMatchは屋内および屋外の場面両方に適当3D目的の検出のための新しい半監視された方法です。
教師と教師の相互学習の枠組みを活用し,ラベル付けされていない列車の情報を擬似ラベルの形で伝達する。
本手法は,ScanNetとSUN-RGBDのベンチマークにおける最先端の手法を,全てのラベル比で有意差で継続的に改善する。
論文 参考訳(メタデータ) (2020-12-08T11:06:26Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z) - SESS: Self-Ensembling Semi-Supervised 3D Object Detection [138.80825169240302]
具体的には、ラベルのない新しい未知のデータに基づくネットワークの一般化を促進するための、徹底的な摂動スキームを設計する。
我々のSESSは、50%のラベル付きデータを用いて、最先端の完全教師付き手法と比較して、競争性能を達成している。
論文 参考訳(メタデータ) (2019-12-26T08:48:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。