論文の概要: Integrating Mamba Sequence Model and Hierarchical Upsampling Network for Accurate Semantic Segmentation of Multiple Sclerosis Legion
- arxiv url: http://arxiv.org/abs/2403.17432v1
- Date: Tue, 26 Mar 2024 06:57:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 16:26:20.300940
- Title: Integrating Mamba Sequence Model and Hierarchical Upsampling Network for Accurate Semantic Segmentation of Multiple Sclerosis Legion
- Title(参考訳): マンバシーケンスモデルと階層的アップサンプリングネットワークの統合による多発性硬化症レジオンの正確なセマンティックセマンティックセグメンテーション
- Authors: Kazi Shahriar Sanjid, Md. Tanzim Hossain, Md. Shakib Shahariar Junayed, Dr. Mohammad Monir Uddin,
- Abstract要約: 我々は,堅牢で効率的なセグメンテーションタスクに適した新しいアーキテクチャであるMamba HUNetを紹介する。
私たちはまず、HUNetを軽量バージョンに変換し、パフォーマンスの同等性を保ち、この軽量版HUNetをMamba HUNetに統合し、その効率をさらに向上した。
特に多発性硬化症病変のセグメンテーションでは,Mamba HUNetが様々なセグメンテーションタスクで有効であることが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating components from convolutional neural networks and state space models in medical image segmentation presents a compelling approach to enhance accuracy and efficiency. We introduce Mamba HUNet, a novel architecture tailored for robust and efficient segmentation tasks. Leveraging strengths from Mamba UNet and the lighter version of Hierarchical Upsampling Network (HUNet), Mamba HUNet combines convolutional neural networks local feature extraction power with state space models long range dependency modeling capabilities. We first converted HUNet into a lighter version, maintaining performance parity and then integrated this lighter HUNet into Mamba HUNet, further enhancing its efficiency. The architecture partitions input grayscale images into patches, transforming them into 1D sequences for processing efficiency akin to Vision Transformers and Mamba models. Through Visual State Space blocks and patch merging layers, hierarchical features are extracted while preserving spatial information. Experimental results on publicly available Magnetic Resonance Imaging scans, notably in Multiple Sclerosis lesion segmentation, demonstrate Mamba HUNet's effectiveness across diverse segmentation tasks. The model's robustness and flexibility underscore its potential in handling complex anatomical structures. These findings establish Mamba HUNet as a promising solution in advancing medical image segmentation, with implications for improving clinical decision making processes.
- Abstract(参考訳): 医療画像セグメント化における畳み込みニューラルネットワークと状態空間モデルからのコンポーネントの統合は、精度と効率を高めるための魅力的なアプローチである。
我々は,堅牢で効率的なセグメンテーションタスクに適した新しいアーキテクチャであるMamba HUNetを紹介する。
Mamba UNetの強みとHUNet(Hierarchical Upsampling Network)の軽量バージョンを活用して、Mamba HUNetは畳み込みニューラルネットワークの局所的特徴抽出能力と、状態空間モデルによる長距離依存性モデリング機能を組み合わせた。
私たちはまず、HUNetを軽量バージョンに変換し、パフォーマンスの同等性を保ち、この軽量版HUNetをMamba HUNetに統合し、その効率をさらに向上した。
アーキテクチャは、入力されたグレースケール画像をパッチに分割し、Vision TransformersやMambaモデルに似た処理効率の1Dシーケンスに変換する。
Visual State Spaceブロックとパッチマージレイヤを通じて、空間情報を保存しながら階層的特徴を抽出する。
特に多発性硬化症病変のセグメンテーションでは,Mamba HUNetが様々なセグメンテーションタスクで有効であることが示されている。
モデルの堅牢性と柔軟性は、複雑な解剖学的構造を扱う可能性を示している。
これらの結果から,マンバHUNetは医用画像のセグメンテーションを推し進める上で有望な解決策であり,臨床的意思決定プロセスの改善に寄与すると考えられる。
関連論文リスト
- MambaClinix: Hierarchical Gated Convolution and Mamba-Based U-Net for Enhanced 3D Medical Image Segmentation [6.673169053236727]
医用画像分割のための新しいU字型アーキテクチャであるMambaClinixを提案する。
MambaClinixは、階層的なゲート畳み込みネットワークとMambaを適応的なステージワイドフレームワークに統合する。
以上の結果から,MambaClinixは低モデルの複雑さを維持しつつ高いセグメンテーション精度を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-09-19T07:51:14Z) - SparX: A Sparse Cross-Layer Connection Mechanism for Hierarchical Vision Mamba and Transformer Networks [45.68176825375723]
本稿では,マンバをベースとした視覚バックボーンネットワークのための効率的な層間特徴集約機構を提案する。
ヒト視覚系における網膜ガングリオン細胞(RGC)にインスパイアされ、SparXと呼ばれる新しいスパース層間結合機構を提案する。
我々の新しい接続機構は、様々な視覚タスクにおいて優れた性能と一般化能力を持つ。
論文 参考訳(メタデータ) (2024-09-15T07:46:18Z) - MSVM-UNet: Multi-Scale Vision Mamba UNet for Medical Image Segmentation [3.64388407705261]
医用画像分割のためのマルチスケールビジョンマンバUNetモデルMSVM-UNetを提案する。
具体的には、VSSブロックにマルチスケールの畳み込みを導入することで、VMambaエンコーダの階層的特徴から、より効果的にマルチスケールの特徴表現をキャプチャし、集約することができる。
論文 参考訳(メタデータ) (2024-08-25T06:20:28Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
本稿では,畳み込みニューラルネットワーク(CNN)とトランスフォーマー層を組み合わせたハイブリッドネットワークを提案する。
プライベートおよびパブリックなDCE-MRIデータセットの実験結果から,提案したハイブリッドネットワークは最先端の手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-08-11T15:46:00Z) - MambaVision: A Hybrid Mamba-Transformer Vision Backbone [54.965143338206644]
本稿では,視覚応用に適した新しいハイブリッド型Mamba-TransformerバックボーンであるMambaVisionを提案する。
私たちのコアコントリビューションには、視覚的特徴の効率的なモデリング能力を高めるために、Mambaの定式化を再設計することが含まれています。
視覚変換器(ViT)とマンバの統合可能性に関する包括的アブレーション研究を行う。
論文 参考訳(メタデータ) (2024-07-10T23:02:45Z) - LKM-UNet: Large Kernel Vision Mamba UNet for Medical Image Segmentation [9.862277278217045]
本稿では,医療画像分割のためのLKM-U-shape Network(LKM-UNet)を提案する。
LKM-UNetの際立った特徴は、小さなカーネルベースのCNNやトランスフォーマーに比べて、局所的な空間モデリングに優れた大きなMambaカーネルの利用である。
包括的実験は、大規模なマンバ核を用いて大きな受容場を実現することの実現可能性と有効性を示す。
論文 参考訳(メタデータ) (2024-03-12T05:34:51Z) - Mamba-UNet: UNet-Like Pure Visual Mamba for Medical Image Segmentation [21.1787366866505]
Mamba-UNetは,医療画像のセグメンテーションにおいてU-Netとマンバの能力を相乗化する新しいアーキテクチャである。
Mamba-UNetは純粋にVisual Mamba(VMamba)ベースのエンコーダデコーダ構造を採用しており、ネットワークのさまざまなスケールで空間情報を保存するためにスキップ接続を注入している。
論文 参考訳(メタデータ) (2024-02-07T18:33:04Z) - Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining [85.08169822181685]
本稿では,医療画像のセグメンテーションに特化して設計された新しいマンバモデルSwin-UMambaを紹介する。
Swin-UMamba は CNN や ViT,最新の Mamba ベースのモデルと比較して,優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-02-05T18:58:11Z) - U-Mamba: Enhancing Long-range Dependency for Biomedical Image
Segmentation [10.083902382768406]
バイオメディカルイメージセグメンテーションのための汎用ネットワークであるU-Mambaを紹介する。
ディープシークエンスモデルの新たなファミリーであるState Space Sequence Models (SSM) にインスパイアされ、我々はハイブリッドCNN-SSMブロックを設計する。
我々は,CTおよびMR画像における腹部臓器の3次元分節化,内視鏡画像における計器の分節化,顕微鏡画像における細胞分節化の4つの課題について実験を行った。
論文 参考訳(メタデータ) (2024-01-09T18:53:20Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Scale-aware Super-resolution Network with Dual Affinity Learning for
Lesion Segmentation from Medical Images [50.76668288066681]
低解像度医用画像から様々な大きさの病変を適応的に分割する,スケールアウェアな超解像ネットワークを提案する。
提案するネットワークは,他の最先端手法と比較して一貫した改善を実現した。
論文 参考訳(メタデータ) (2023-05-30T14:25:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。