論文の概要: Mamba-UNet: UNet-Like Pure Visual Mamba for Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2402.05079v2
- Date: Sat, 30 Mar 2024 17:51:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-02 14:15:46.187363
- Title: Mamba-UNet: UNet-Like Pure Visual Mamba for Medical Image Segmentation
- Title(参考訳): Mamba-UNet: 医用画像セグメンテーションのためのUNetライクな純視覚マンバ
- Authors: Ziyang Wang, Jian-Qing Zheng, Yichi Zhang, Ge Cui, Lei Li,
- Abstract要約: Mamba-UNetは,医療画像のセグメンテーションにおいてU-Netとマンバの能力を相乗化する新しいアーキテクチャである。
Mamba-UNetは純粋にVisual Mamba(VMamba)ベースのエンコーダデコーダ構造を採用しており、ネットワークのさまざまなスケールで空間情報を保存するためにスキップ接続を注入している。
- 参考スコア(独自算出の注目度): 21.1787366866505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent advancements in medical image analysis, Convolutional Neural Networks (CNN) and Vision Transformers (ViT) have set significant benchmarks. While the former excels in capturing local features through its convolution operations, the latter achieves remarkable global context understanding by leveraging self-attention mechanisms. However, both architectures exhibit limitations in efficiently modeling long-range dependencies within medical images, which is a critical aspect for precise segmentation. Inspired by the Mamba architecture, known for its proficiency in handling long sequences and global contextual information with enhanced computational efficiency as a State Space Model (SSM), we propose Mamba-UNet, a novel architecture that synergizes the U-Net in medical image segmentation with Mamba's capability. Mamba-UNet adopts a pure Visual Mamba (VMamba)-based encoder-decoder structure, infused with skip connections to preserve spatial information across different scales of the network. This design facilitates a comprehensive feature learning process, capturing intricate details and broader semantic contexts within medical images. We introduce a novel integration mechanism within the VMamba blocks to ensure seamless connectivity and information flow between the encoder and decoder paths, enhancing the segmentation performance. We conducted experiments on publicly available ACDC MRI Cardiac segmentation dataset, and Synapse CT Abdomen segmentation dataset. The results show that Mamba-UNet outperforms several types of UNet in medical image segmentation under the same hyper-parameter setting. The source code and baseline implementations are available.
- Abstract(参考訳): 医療画像解析の最近の進歩の中で、畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)は重要なベンチマークを設定している。
前者は畳み込み操作による局所的特徴の捕捉に長けているが、後者は自己認識機構を活用することで、目覚ましいグローバルな文脈理解を実現している。
しかし、どちらのアーキテクチャも、正確なセグメンテーションにおいて重要な側面である医用画像内の長距離依存関係を効率的にモデル化する際の限界を示す。
SSM(State Space Model)として計算効率を向上した長いシーケンスやグローバルなコンテキスト情報を扱う能力で知られるMambaアーキテクチャに触発されて,Mamba-UNetを提案する。
Mamba-UNetは純粋にVisual Mamba(VMamba)ベースのエンコーダデコーダ構造を採用しており、ネットワークのさまざまなスケールで空間情報を保存するためにスキップ接続を注入している。
このデザインは包括的特徴学習プロセスを促進し、複雑な詳細と医療画像内のより広い意味的コンテキストをキャプチャする。
我々は,エンコーダとデコーダの経路間のシームレスな接続と情報フローを確保するため,VMambaブロック内に新たな統合機構を導入し,セグメンテーション性能を向上させる。
今回我々は,ACDC MRI心磁区データセットとSynapse CT腹水区データセットについて実験を行った。
その結果,Mamba-UNetは,同じハイパーパラメータ設定下での医用画像のセグメンテーションにおいて,複数の種類のUNetよりも優れていた。
ソースコードとベースラインの実装が利用可能だ。
関連論文リスト
- V2M: Visual 2-Dimensional Mamba for Image Representation Learning [68.51380287151927]
Mambaは、フレキシブルな設計と、1Dシーケンスを処理するための効率的なハードウェア性能のために、広く注目を集めている。
最近の研究では、マンバを2D画像をパッチに平らにすることで視覚領域に適用し、それらを1Dシークエンスとして扱うことが試みられている。
2次元空間における画像トークンを直接処理する完全解として,視覚的2次元マンバモデルを提案する。
論文 参考訳(メタデータ) (2024-10-14T11:11:06Z) - A Comprehensive Survey of Mamba Architectures for Medical Image Analysis: Classification, Segmentation, Restoration and Beyond [2.838321145442743]
Mambaは、医用画像分析におけるテンプレートベースのディープラーニングアプローチに代わるものだ。
線形時間の複雑さがあり、トランスよりも大幅に改善されている。
Mambaは、注意機構のない長いシーケンスを処理し、高速な推論を可能にし、メモリを少なくする。
論文 参考訳(メタデータ) (2024-10-03T10:23:03Z) - MambaVision: A Hybrid Mamba-Transformer Vision Backbone [54.965143338206644]
本稿では,視覚応用に適した新しいハイブリッド型Mamba-TransformerバックボーンであるMambaVisionを提案する。
私たちのコアコントリビューションには、視覚的特徴の効率的なモデリング能力を高めるために、Mambaの定式化を再設計することが含まれています。
視覚変換器(ViT)とマンバの統合可能性に関する包括的アブレーション研究を行う。
論文 参考訳(メタデータ) (2024-07-10T23:02:45Z) - LKM-UNet: Large Kernel Vision Mamba UNet for Medical Image Segmentation [9.862277278217045]
本稿では,医療画像分割のためのLKM-U-shape Network(LKM-UNet)を提案する。
LKM-UNetの際立った特徴は、小さなカーネルベースのCNNやトランスフォーマーに比べて、局所的な空間モデリングに優れた大きなMambaカーネルの利用である。
包括的実験は、大規模なマンバ核を用いて大きな受容場を実現することの実現可能性と有効性を示す。
論文 参考訳(メタデータ) (2024-03-12T05:34:51Z) - MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection [72.46396769642787]
ネスト構造であるMamba-in-Mamba(MiM-ISTD)を開発した。
MiM-ISTDはSOTA法より8倍高速で、2048×2048$のイメージでテストすると、GPUメモリ使用率を62.2$%削減する。
論文 参考訳(メタデータ) (2024-03-04T15:57:29Z) - Weak-Mamba-UNet: Visual Mamba Makes CNN and ViT Work Better for
Scribble-based Medical Image Segmentation [13.748446415530937]
本稿では医用画像セグメンテーションのための革新的な弱教師付き学習(WSL)フレームワークであるWeak-Mamba-UNetを紹介する。
WSL戦略には3つの異なるアーキテクチャがあるが、同じ対称エンコーダ・デコーダネットワークが組み込まれている。CNNベースのローカル特徴抽出用UNet、包括的なグローバルコンテキスト理解のためのSwin TransformerベースのSwinUNet、より効率的な長距離依存性モデリングのためのVMambaベースのMamba-UNetである。
Weak-Mamba-UNetの有効性は、類似したWSLの性能を超越した、処理アノテーション付きMRI心筋セグメンテーションデータセット上で検証される。
論文 参考訳(メタデータ) (2024-02-16T18:43:39Z) - Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining [85.08169822181685]
本稿では,医療画像のセグメンテーションに特化して設計された新しいマンバモデルSwin-UMambaを紹介する。
Swin-UMamba は CNN や ViT,最新の Mamba ベースのモデルと比較して,優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-02-05T18:58:11Z) - VM-UNet: Vision Mamba UNet for Medical Image Segmentation [2.3876474175791302]
医用画像セグメンテーションのためのU字型アーキテクチャモデルVision Mamba UNet(VM-UNet)を提案する。
我々はISIC17,ISIC18,Synapseデータセットの総合的な実験を行い,VM-UNetが医用画像分割タスクにおいて競争力を発揮することを示す。
論文 参考訳(メタデータ) (2024-02-04T13:37:21Z) - Vivim: a Video Vision Mamba for Medical Video Segmentation [52.11785024350253]
本稿では、医用ビデオセグメンテーションタスクのためのビデオビジョンマンバベースのフレームワークVivimを提案する。
我々のビビムは、長期表現を様々なスケールのシーケンスに効果的に圧縮することができる。
超音波検査では甲状腺分節,乳房病変分節,大腸内視鏡検査ではポリープ分節が有効で有効であった。
論文 参考訳(メタデータ) (2024-01-25T13:27:03Z) - U-Mamba: Enhancing Long-range Dependency for Biomedical Image
Segmentation [10.083902382768406]
バイオメディカルイメージセグメンテーションのための汎用ネットワークであるU-Mambaを紹介する。
ディープシークエンスモデルの新たなファミリーであるState Space Sequence Models (SSM) にインスパイアされ、我々はハイブリッドCNN-SSMブロックを設計する。
我々は,CTおよびMR画像における腹部臓器の3次元分節化,内視鏡画像における計器の分節化,顕微鏡画像における細胞分節化の4つの課題について実験を行った。
論文 参考訳(メタデータ) (2024-01-09T18:53:20Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
医用画像のセグメンテーションは医療システムの開発に必須の前提条件である。
様々な医療画像セグメンテーションタスクにおいて、U-Netとして知られるu字型アーキテクチャがデファクトスタンダードとなっている。
医用画像セグメンテーションの強力な代替手段として,トランスフォーマーとU-Netの両方を有効活用するTransUNetを提案する。
論文 参考訳(メタデータ) (2021-02-08T16:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。