論文の概要: Chain of Compression: A Systematic Approach to Combinationally Compress Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2403.17447v1
- Date: Tue, 26 Mar 2024 07:26:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 16:16:34.323675
- Title: Chain of Compression: A Systematic Approach to Combinationally Compress Convolutional Neural Networks
- Title(参考訳): 圧縮の連鎖:畳み込みニューラルネットワークを併用するための体系的アプローチ
- Authors: Yingtao Shen, Minqing Sun, Jie Zhao, An Zou,
- Abstract要約: 畳み込みニューラルネットワーク(CNN)は非常に人気があるが、その計算とメモリの強度は、リソース制約の計算システムに課題をもたらす。
量子化、プルーニング、早期出口、知識蒸留といった多くのアプローチは、ニューラルネットワークの冗長性を減少させる効果を示している。
本稿では、ニューラルネットワークの圧縮にこれらの一般的な手法を適用するために、組み合わせシーケンスで動作する圧縮の連鎖を提案する。
- 参考スコア(独自算出の注目度): 3.309813585671485
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural networks (CNNs) have achieved significant popularity, but their computational and memory intensity poses challenges for resource-constrained computing systems, particularly with the prerequisite of real-time performance. To release this burden, model compression has become an important research focus. Many approaches like quantization, pruning, early exit, and knowledge distillation have demonstrated the effect of reducing redundancy in neural networks. Upon closer examination, it becomes apparent that each approach capitalizes on its unique features to compress the neural network, and they can also exhibit complementary behavior when combined. To explore the interactions and reap the benefits from the complementary features, we propose the Chain of Compression, which works on the combinational sequence to apply these common techniques to compress the neural network. Validated on the image-based regression and classification networks across different data sets, our proposed Chain of Compression can significantly compress the computation cost by 100-1000 times with ignorable accuracy loss compared with the baseline model.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)は非常に人気があるが、その計算とメモリの強度は、特にリアルタイムパフォーマンスの前提条件で、リソース制約のコンピューティングシステムに課題をもたらす。
この重荷を解放するために、モデル圧縮は重要な研究の焦点となっている。
量子化、プルーニング、早期出口、知識蒸留といった多くのアプローチは、ニューラルネットワークの冗長性を減少させる効果を示している。
より精査すると、それぞれのアプローチがニューラルネットワークを圧縮するために独自の特徴を生かし、組み合わせることで相補的な振る舞いを示すことが明らかになる。
相互作用を探索し、相補的特徴の利点を享受するために、ニューラルネットワークの圧縮にこれらの一般的な手法を適用するために組み合わせシーケンスで動作する圧縮の連鎖(Chain of Compression)を提案する。
そこで提案したChain of Compressionは,画像に基づく回帰と分類ネットワークを用いて,ベースラインモデルと比較して計算コストを100~1000倍に圧縮する。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - A comprehensive study of spike and slab shrinkage priors for
structurally sparse Bayesian neural networks [0.16385815610837165]
スパースディープラーニングは、基礎となるターゲット関数のスパース表現を復元することで、課題に対処する。
構造化された空間によって圧縮されたディープニューラルアーキテクチャは、低レイテンシ推論、データスループットの向上、エネルギー消費の削減を提供する。
本研究では, (i) Spike-and-Slab Group Lasso (SS-GL) と (ii) Spike-and-Slab Group Horseshoe (SS-GHS) を併用した過剰ノードを誘発する構造的疎いベイズニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-17T17:14:18Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
量子ニューラルネットワーク(QNN)は物理世界を理解する上で重要なツールとなっているが、その利点と限界は完全には理解されていない。
本稿では,多クラス分類タスクにおけるQCの問題依存力について検討する。
我々の研究はQNNの課題依存力に光を当て、その潜在的なメリットを評価するための実践的なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T10:46:40Z) - Compact representations of convolutional neural networks via weight
pruning and quantization [63.417651529192014]
本稿では、音源符号化に基づく畳み込みニューラルネットワーク(CNN)の新しいストレージフォーマットを提案し、重み付けと量子化の両方を活用する。
我々は、全接続層で0.6%、ネットワーク全体で5.44%のスペース占有率を削減し、最低でもベースラインと同じくらいの競争力を発揮する。
論文 参考訳(メタデータ) (2021-08-28T20:39:54Z) - On Effects of Compression with Hyperdimensional Computing in Distributed
Randomized Neural Networks [6.25118865553438]
ランダム化ニューラルネットワークと超次元計算に基づく分散分類モデルを提案する。
本研究では,従来の圧縮アルゴリズムや次元減少,量子化技術と比較し,より柔軟な圧縮手法を提案する。
論文 参考訳(メタデータ) (2021-06-17T22:02:40Z) - Attribution Preservation in Network Compression for Reliable Network
Interpretation [81.84564694303397]
安全に敏感なアプリケーションに埋め込まれたニューラルネットワークは、エッジ計算のサイズを減らすために、後向きの分析とネットワーク圧縮に入力属性に依存する。
ネットワーク圧縮が生成した属性を変形させるため,これらの非関係な手法が相互に競合することを示す。
この現象は、従来のネットワーク圧縮手法が、属性の品質を無視しながら、ネットワークの予測のみを保存するという事実から生じる。
論文 参考訳(メタデータ) (2020-10-28T16:02:31Z) - Exploiting Non-Linear Redundancy for Neural Model Compression [26.211513643079993]
本稿では,線形依存の活用に基づく新しいモデル圧縮手法を提案する。
その結果,ネットワークサイズが最大99%減少し,性能が低下することがわかった。
論文 参考訳(メタデータ) (2020-05-28T15:13:21Z) - Compact Neural Representation Using Attentive Network Pruning [1.0152838128195465]
本稿では,Bottom-Upフィードフォワードネットワークに付加されたTop-Downアテンション機構について述べる。
提案手法は, 新たな階層選択機構をプルーニングの基礎として導入するだけでなく, 実験評価において, 従来のベースライン手法と競合するままである。
論文 参考訳(メタデータ) (2020-05-10T03:20:01Z) - Structured Sparsification with Joint Optimization of Group Convolution
and Channel Shuffle [117.95823660228537]
本稿では,効率的なネットワーク圧縮のための新しい構造空間分割法を提案する。
提案手法は, 畳み込み重みに対する構造的疎度を自動的に誘導する。
また,学習可能なチャネルシャッフル機構によるグループ間通信の問題にも対処する。
論文 参考訳(メタデータ) (2020-02-19T12:03:10Z) - Understanding Generalization in Deep Learning via Tensor Methods [53.808840694241]
圧縮の観点から,ネットワークアーキテクチャと一般化可能性の関係について理解を深める。
本稿では、ニューラルネットワークの圧縮性と一般化性を強く特徴付ける、直感的で、データ依存的で、測定が容易な一連の特性を提案する。
論文 参考訳(メタデータ) (2020-01-14T22:26:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。