Building Bridges across Spatial and Temporal Resolutions: Reference-Based Super-Resolution via Change Priors and Conditional Diffusion Model
- URL: http://arxiv.org/abs/2403.17460v1
- Date: Tue, 26 Mar 2024 07:48:49 GMT
- Title: Building Bridges across Spatial and Temporal Resolutions: Reference-Based Super-Resolution via Change Priors and Conditional Diffusion Model
- Authors: Runmin Dong, Shuai Yuan, Bin Luo, Mengxuan Chen, Jinxiao Zhang, Lixian Zhang, Weijia Li, Juepeng Zheng, Haohuan Fu,
- Abstract summary: RefSR has the potential to build bridges across spatial and temporal resolutions of remote sensing images.
Conditional diffusion models have opened up new opportunities for generating realistic high-resolution images.
We propose Ref-Diff for RefSR, using the land cover change priors to guide the denoising process explicitly.
- Score: 13.368558322546784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reference-based super-resolution (RefSR) has the potential to build bridges across spatial and temporal resolutions of remote sensing images. However, existing RefSR methods are limited by the faithfulness of content reconstruction and the effectiveness of texture transfer in large scaling factors. Conditional diffusion models have opened up new opportunities for generating realistic high-resolution images, but effectively utilizing reference images within these models remains an area for further exploration. Furthermore, content fidelity is difficult to guarantee in areas without relevant reference information. To solve these issues, we propose a change-aware diffusion model named Ref-Diff for RefSR, using the land cover change priors to guide the denoising process explicitly. Specifically, we inject the priors into the denoising model to improve the utilization of reference information in unchanged areas and regulate the reconstruction of semantically relevant content in changed areas. With this powerful guidance, we decouple the semantics-guided denoising and reference texture-guided denoising processes to improve the model performance. Extensive experiments demonstrate the superior effectiveness and robustness of the proposed method compared with state-of-the-art RefSR methods in both quantitative and qualitative evaluations. The code and data are available at https://github.com/dongrunmin/RefDiff.
Related papers
- Denoising as Adaptation: Noise-Space Domain Adaptation for Image Restoration [64.84134880709625]
We show that it is possible to perform domain adaptation via the noise space using diffusion models.
In particular, by leveraging the unique property of how auxiliary conditional inputs influence the multi-step denoising process, we derive a meaningful diffusion loss.
We present crucial strategies such as channel-shuffling layer and residual-swapping contrastive learning in the diffusion model.
arXiv Detail & Related papers (2024-06-26T17:40:30Z) - Detail-Enhancing Framework for Reference-Based Image Super-Resolution [8.899312174844725]
We propose a Detail-Enhancing Framework (DEF) for reference-based super-resolution.
Our proposed method achieves superior visual results while maintaining comparable numerical outcomes.
arXiv Detail & Related papers (2024-05-01T10:27:22Z) - Spatial-and-Frequency-aware Restoration method for Images based on
Diffusion Models [7.947387272047602]
We propose SaFaRI, a spatial-and-frequency-aware diffusion model for Image Restoration (IR)
Our model encourages images to preserve data-fidelity in both the spatial and frequency domains, resulting in enhanced reconstruction quality.
Our thorough evaluation demonstrates that SaFaRI achieves state-of-the-art performance on both the ImageNet datasets and FFHQ datasets.
arXiv Detail & Related papers (2024-01-31T07:11:01Z) - Reconstruct-and-Generate Diffusion Model for Detail-Preserving Image
Denoising [16.43285056788183]
We propose a novel approach called the Reconstruct-and-Generate Diffusion Model (RnG)
Our method leverages a reconstructive denoising network to recover the majority of the underlying clean signal.
It employs a diffusion algorithm to generate residual high-frequency details, thereby enhancing visual quality.
arXiv Detail & Related papers (2023-09-19T16:01:20Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.
This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.
We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
We propose a diffusion model-based super-resolution method called ACDMSR.
Our method adapts the standard diffusion model to perform super-resolution through a deterministic iterative denoising process.
Our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
arXiv Detail & Related papers (2023-07-03T06:49:04Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - DiffusionAD: Norm-guided One-step Denoising Diffusion for Anomaly
Detection [89.49600182243306]
We reformulate the reconstruction process using a diffusion model into a noise-to-norm paradigm.
We propose a rapid one-step denoising paradigm, significantly faster than the traditional iterative denoising in diffusion models.
The segmentation sub-network predicts pixel-level anomaly scores using the input image and its anomaly-free restoration.
arXiv Detail & Related papers (2023-03-15T16:14:06Z) - MASA-SR: Matching Acceleration and Spatial Adaptation for
Reference-Based Image Super-Resolution [74.24676600271253]
We propose the MASA network for RefSR, where two novel modules are designed to address these problems.
The proposed Match & Extraction Module significantly reduces the computational cost by a coarse-to-fine correspondence matching scheme.
The Spatial Adaptation Module learns the difference of distribution between the LR and Ref images, and remaps the distribution of Ref features to that of LR features in a spatially adaptive way.
arXiv Detail & Related papers (2021-06-04T07:15:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.