Controllable Reference-Based Real-World Remote Sensing Image Super-Resolution with Generative Diffusion Priors
- URL: http://arxiv.org/abs/2506.23801v1
- Date: Mon, 30 Jun 2025 12:45:28 GMT
- Title: Controllable Reference-Based Real-World Remote Sensing Image Super-Resolution with Generative Diffusion Priors
- Authors: Ce Wang, Wanjie Sun,
- Abstract summary: Super-resolution (SR) techniques can enhance the spatial resolution of remote sensing images by utilizing low-resolution (LR) images to reconstruct high-resolution (HR) images.<n>Existing RefSR methods struggle with real-world complexities, such as cross-sensor resolution gap and significant land cover changes.<n>We propose CRefDiff, a novel controllable reference-based diffusion model for real-world remote sensing image SR.
- Score: 13.148815217684277
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Super-resolution (SR) techniques can enhance the spatial resolution of remote sensing images by utilizing low-resolution (LR) images to reconstruct high-resolution (HR) images, enabling more efficient large-scale earth observation applications. While single-image super-resolution (SISR) methods have shown progress, reference-based super-resolution (RefSR) offers superior performance by incorporating historical HR images alongside current LR observations. However, existing RefSR methods struggle with real-world complexities, such as cross-sensor resolution gap and significant land cover changes, often leading to under-generation or over-reliance on reference image. To address these challenges, we propose CRefDiff, a novel controllable reference-based diffusion model for real-world remote sensing image SR. To address the under-generation problem, CRefDiff is built upon the pretrained Stable Diffusion model, leveraging its powerful generative prior to produce accurate structures and textures. To mitigate over-reliance on the reference, we introduce a dual-branch fusion mechanism that adaptively integrates both local and global information from the reference image. Moreover, this novel dual-branch design enables reference strength control during inference, enhancing interactivity and flexibility of the model. Finally, a strategy named Better Start is proposed to significantly reduce the number of denoising steps, thereby accelerating the inference process. To support further research, we introduce Real-RefRSSRD, a new real-world RefSR dataset for remote sensing images, consisting of HR NAIP and LR Sentinel-2 image pairs with diverse land cover changes and significant temporal gaps. Extensive experiments on Real-RefRSSRD show that CRefDiff achieves state-of-the-art performance across various metrics and improves downstream tasks such as scene classification and semantic segmentation.
Related papers
- Unsupervised Image Super-Resolution Reconstruction Based on Real-World Degradation Patterns [4.977925450373957]
We propose a novel TripleGAN framework for training super-resolution reconstruction models.<n>The framework learns real-world degradation patterns from LR observations and synthesizes datasets with corresponding degradation characteristics.<n>Our method exhibits clear advantages in quantitative metrics while maintaining sharp reconstructions without over-smoothing artifacts.
arXiv Detail & Related papers (2025-06-20T14:24:48Z) - Building Bridges across Spatial and Temporal Resolutions: Reference-Based Super-Resolution via Change Priors and Conditional Diffusion Model [13.368558322546784]
RefSR has the potential to build bridges across spatial and temporal resolutions of remote sensing images.
Conditional diffusion models have opened up new opportunities for generating realistic high-resolution images.
We propose Ref-Diff for RefSR, using the land cover change priors to guide the denoising process explicitly.
arXiv Detail & Related papers (2024-03-26T07:48:49Z) - Bridging the Domain Gap: A Simple Domain Matching Method for
Reference-based Image Super-Resolution in Remote Sensing [8.36527949191506]
Recently, reference-based image super-resolution (RefSR) has shown excellent performance in image super-resolution (SR) tasks.
We introduce a Domain Matching (DM) module that can be seamlessly integrated with existing RefSR models.
Our analysis reveals that their domain gaps often occur in different satellites, and our model effectively addresses these challenges.
arXiv Detail & Related papers (2024-01-29T08:10:00Z) - Reference-based Image and Video Super-Resolution via C2-Matching [100.0808130445653]
We propose C2-Matching, which performs explicit robust matching crossing transformation and resolution.
C2-Matching significantly outperforms state of the arts on the standard CUFED5 benchmark.
We also extend C2-Matching to Reference-based Video Super-Resolution task, where an image taken in a similar scene serves as the HR reference image.
arXiv Detail & Related papers (2022-12-19T16:15:02Z) - DCS-RISR: Dynamic Channel Splitting for Efficient Real-world Image
Super-Resolution [15.694407977871341]
Real-world image super-resolution (RISR) has received increased focus for improving the quality of SR images under unknown complex degradation.
Existing methods rely on the heavy SR models to enhance low-resolution (LR) images of different degradation levels.
We propose a novel Dynamic Channel Splitting scheme for efficient Real-world Image Super-Resolution, termed DCS-RISR.
arXiv Detail & Related papers (2022-12-15T04:34:57Z) - Memory-augmented Deep Unfolding Network for Guided Image
Super-resolution [67.83489239124557]
Guided image super-resolution (GISR) aims to obtain a high-resolution (HR) target image by enhancing the spatial resolution of a low-resolution (LR) target image under the guidance of a HR image.
Previous model-based methods mainly takes the entire image as a whole, and assume the prior distribution between the HR target image and the HR guidance image.
We propose a maximal a posterior (MAP) estimation model for GISR with two types of prior on the HR target image.
arXiv Detail & Related papers (2022-02-12T15:37:13Z) - MASA-SR: Matching Acceleration and Spatial Adaptation for
Reference-Based Image Super-Resolution [74.24676600271253]
We propose the MASA network for RefSR, where two novel modules are designed to address these problems.
The proposed Match & Extraction Module significantly reduces the computational cost by a coarse-to-fine correspondence matching scheme.
The Spatial Adaptation Module learns the difference of distribution between the LR and Ref images, and remaps the distribution of Ref features to that of LR features in a spatially adaptive way.
arXiv Detail & Related papers (2021-06-04T07:15:32Z) - Robust Reference-based Super-Resolution via C2-Matching [77.51610726936657]
Super-Resolution (Ref-SR) has recently emerged as a promising paradigm to enhance a low-resolution (LR) input image by introducing an additional high-resolution (HR) reference image.
Existing Ref-SR methods mostly rely on implicit correspondence matching to borrow HR textures from reference images to compensate for the information loss in input images.
We propose C2-Matching, which produces explicit robust matching crossing transformation and resolution.
arXiv Detail & Related papers (2021-06-03T16:40:36Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z) - Deep Cyclic Generative Adversarial Residual Convolutional Networks for
Real Image Super-Resolution [20.537597542144916]
We consider a deep cyclic network structure to maintain the domain consistency between the LR and HR data distributions.
We propose the Super-Resolution Residual Cyclic Generative Adversarial Network (SRResCycGAN) by training with a generative adversarial network (GAN) framework for the LR to HR domain translation.
arXiv Detail & Related papers (2020-09-07T11:11:18Z) - HighRes-net: Recursive Fusion for Multi-Frame Super-Resolution of
Satellite Imagery [55.253395881190436]
Multi-frame Super-Resolution (MFSR) offers a more grounded approach to the ill-posed problem.
This is important for satellite monitoring of human impact on the planet.
We present HighRes-net, the first deep learning approach to MFSR that learns its sub-tasks in an end-to-end fashion.
arXiv Detail & Related papers (2020-02-15T22:17:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.