論文の概要: Variational Graph Auto-Encoder Based Inductive Learning Method for Semi-Supervised Classification
- arxiv url: http://arxiv.org/abs/2403.17500v1
- Date: Tue, 26 Mar 2024 08:59:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 16:06:48.696123
- Title: Variational Graph Auto-Encoder Based Inductive Learning Method for Semi-Supervised Classification
- Title(参考訳): 変分グラフオートエンコーダを用いた半教師付き分類のための帰納学習法
- Authors: Hanxuan Yang, Zhaoxin Yu, Qingchao Kong, Wei Liu, Wenji Mao,
- Abstract要約: 帰納的グラフ表現学習のための自己ラベル拡張VGAEモデルを提案する。
学習にラベル情報を活用するため,本モデルではノードラベルをワンホット符号化入力とし,モデルトレーニングにおいてラベル再構成を行う。
提案したモデルアーカイブは、セミ教師付き学習環境下でのノード分類において、特に優越する結果を約束する。
- 参考スコア(独自算出の注目度): 10.497590357666114
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph representation learning is a fundamental research issue in various domains of applications, of which the inductive learning problem is particularly challenging as it requires models to generalize to unseen graph structures during inference. In recent years, graph neural networks (GNNs) have emerged as powerful graph models for inductive learning tasks such as node classification, whereas they typically heavily rely on the annotated nodes under a fully supervised training setting. Compared with the GNN-based methods, variational graph auto-encoders (VGAEs) are known to be more generalizable to capture the internal structural information of graphs independent of node labels and have achieved prominent performance on multiple unsupervised learning tasks. However, so far there is still a lack of work focusing on leveraging the VGAE framework for inductive learning, due to the difficulties in training the model in a supervised manner and avoiding over-fitting the proximity information of graphs. To solve these problems and improve the model performance of VGAEs for inductive graph representation learning, in this work, we propose the Self-Label Augmented VGAE model. To leverage the label information for training, our model takes node labels as one-hot encoded inputs and then performs label reconstruction in model training. To overcome the scarcity problem of node labels for semi-supervised settings, we further propose the Self-Label Augmentation Method (SLAM), which uses pseudo labels generated by our model with a node-wise masking approach to enhance the label information. Experiments on benchmark inductive learning graph datasets verify that our proposed model archives promising results on node classification with particular superiority under semi-supervised learning settings.
- Abstract(参考訳): グラフ表現学習は、様々な分野のアプリケーションにおいて基本的な研究課題であり、推論中に目に見えないグラフ構造に一般化するモデルを必要とするため、帰納的学習問題は特に困難である。
近年、グラフニューラルネットワーク(GNN)はノード分類などの帰納的学習タスクのための強力なグラフモデルとして登場し、一般的には完全に教師付きトレーニング環境下では注釈付きノードに大きく依存している。
GNNベースの手法と比較して、変分グラフオートエンコーダ(VGAE)はノードラベルに依存しないグラフの内部構造情報をより一般化できることが知られ、複数の教師なし学習タスクにおいて顕著なパフォーマンスを達成している。
しかしながら,教師付き手法によるモデルのトレーニングが困難であり,グラフの近接情報を過度に適合させないため,VGAEフレームワークの帰納的学習への活用に注力する作業は依然として不足している。
これらの問題を解決するために,帰納的グラフ表現学習のためのVGAEのモデル性能を改善するために,本研究では,自己ラベル拡張VGAEモデルを提案する。
学習にラベル情報を活用するため,本モデルではノードラベルをワンホット符号化入力とし,モデルトレーニングにおいてラベル再構成を行う。
半教師付き設定におけるノードラベルの不足を克服するため,我々は,ノードワイドマスキング手法を用いてモデルによって生成された擬似ラベルを用いてラベル情報を強化する自己ラベル拡張手法 (SLAM) を提案する。
ベンチマーク帰納学習グラフデータセットの実験により,提案したモデルが,半教師付き学習環境下でのノード分類において有望な結果を示すことを確認した。
関連論文リスト
- Gradformer: Graph Transformer with Exponential Decay [69.50738015412189]
グラフ変換器(GT)の自己保持機構は、グラフの帰納バイアス、特に構造に関するバイアスを見落としている。
本稿では,GTと本質的帰納バイアスを革新的に統合するGradformerを提案する。
GradformerはグラフニューラルネットワークやGTベースラインモデルよりも、さまざまなグラフ分類や回帰タスクにおいて一貫して優れています。
論文 参考訳(メタデータ) (2024-04-24T08:37:13Z) - Isomorphic-Consistent Variational Graph Auto-Encoders for Multi-Level
Graph Representation Learning [9.039193854524763]
本稿では,タスク非依存グラフ表現学習のためのアイソモルフィック-一貫性VGAE(IsoC-VGAE)を提案する。
まず、同型整合性を維持する理論的保証を提供するための復号法を考案する。
次に,逆グラフニューラルネットワーク(Inv-GNN)デコーダを直感的な実現法として提案する。
論文 参考訳(メタデータ) (2023-12-09T10:16:53Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
本稿では,GNNの逆写像に対する新しい,スケーラブルな近似による学習バイアスを軽減するために,ラベルの効率的な正規化手法,すなわちラベルのデコンボリューション(LD)を提案する。
実験では、LDはOpen Graphデータセットのベンチマークで最先端のメソッドを大幅に上回っている。
論文 参考訳(メタデータ) (2023-09-26T13:09:43Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
我々は、新しい自己教師型学習フレームワーク、グラフ情報支援ノード機能exTraction (GIANT)を提案する。
GIANT は eXtreme Multi-label Classification (XMC) 形式を利用しており、これはグラフ情報に基づいた言語モデルの微調整に不可欠である。
我々は,Open Graph Benchmarkデータセット上での標準GNNパイプラインよりもGIANTの方が優れた性能を示す。
論文 参考訳(メタデータ) (2021-10-29T19:55:12Z) - Meta-Inductive Node Classification across Graphs [6.0471030308057285]
MI-GNNと呼ばれる新しいメタインダクタティブフレームワークを提案し、各グラフにインダクタティブモデルをカスタマイズする。
MI-GNNは誘導モデルを直接学習するものではなく、新しいグラフ上の半監視ノード分類のためのモデルをトレーニングする方法に関する一般的な知識を学ぶ。
5つの実世界のグラフコレクションに関する広範な実験により,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2021-05-14T09:16:28Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
教師なしグラフ表現学習は、教師なしの低次元ノード埋め込みを学習することを目的としている。
本稿では、自己教師付き手法を用いた教師なしグラフ表現学習のための新しいクラスタ対応グラフニューラルネットワーク(CAGNN)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-03T13:57:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。