論文の概要: Random-coupled Neural Network
- arxiv url: http://arxiv.org/abs/2403.17512v1
- Date: Tue, 26 Mar 2024 09:13:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 16:06:48.682012
- Title: Random-coupled Neural Network
- Title(参考訳): ランダム結合型ニューラルネットワーク
- Authors: Haoran Liu, Mingzhe Liu, Peng Li, Jiahui Wu, Xin Jiang, Zhuo Zuo, Bingqi Liu,
- Abstract要約: パルス結合ニューラルネットワーク(PCNN)は、コンピュータビジョンとニューラルネットワークの分野における人間の脳の特徴を模倣するためのよく応用されたモデルである。
本研究では,ランダム結合ニューラルネットワーク(RCNN)を提案する。
ランダム不活性化プロセスを通じて、PCNNのニューロモルフィックコンピューティングの困難を克服する。
- 参考スコア(独自算出の注目度): 17.53731608985241
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Improving the efficiency of current neural networks and modeling them in biological neural systems have become popular research directions in recent years. Pulse-coupled neural network (PCNN) is a well applicated model for imitating the computation characteristics of the human brain in computer vision and neural network fields. However, differences between the PCNN and biological neural systems remain: limited neural connection, high computational cost, and lack of stochastic property. In this study, random-coupled neural network (RCNN) is proposed. It overcomes these difficulties in PCNN's neuromorphic computing via a random inactivation process. This process randomly closes some neural connections in the RCNN model, realized by the random inactivation weight matrix of link input. This releases the computational burden of PCNN, making it affordable to achieve vast neural connections. Furthermore, the image and video processing mechanisms of RCNN are researched. It encodes constant stimuli as periodic spike trains and periodic stimuli as chaotic spike trains, the same as biological neural information encoding characteristics. Finally, the RCNN is applicated to image segmentation, fusion, and pulse shape discrimination subtasks. It is demonstrated to be robust, efficient, and highly anti-noised, with outstanding performance in all applications mentioned above.
- Abstract(参考訳): 近年、現在のニューラルネットワークの効率を改善し、生体神経システムでそれらをモデル化することが研究の方向性として人気を博している。
パルス結合ニューラルネットワーク(PCNN)は、コンピュータビジョンとニューラルネットワークの分野における人間の脳の計算特性を模倣する、よく応用されたモデルである。
しかし、PCNNと生物学的ニューラルネットワークの違いは、限られた神経接続、高い計算コスト、確率的特性の欠如である。
本研究では,ランダム結合ニューラルネットワーク(RCNN)を提案する。
ランダム不活性化プロセスを通じて、PCNNのニューロモルフィックコンピューティングにおけるこれらの困難を克服する。
このプロセスは、リンク入力のランダム不活性化重み行列によって実現されたRCNNモデルのいくつかのニューラルネットワークをランダムにクローズする。
これにより、PCNNの計算負担が解放され、膨大なニューラルネットワークを実現するのに安価になる。
さらに,RCNNの画像処理機構と映像処理機構について検討した。
周期的なスパイク・トレインや周期的な刺激をカオス的なスパイク・トレインとしてエンコードする。
最後に、RCNNは画像分割、融合、パルス形状判別サブタスクに適用される。
強靭で、効率的で、非常にアンチノイズ化されており、上述した全てのアプリケーションで優れた性能を発揮している。
関連論文リスト
- Investigating Sparsity in Recurrent Neural Networks [0.0]
本論文は, プルーニングとスパースリカレントニューラルネットワークがRNNの性能に与える影響を考察することに焦点を当てる。
まず,RNNの刈り込み,RNNの性能への影響,および刈り込み後の精度回復に必要な訓練エポック数について述べる。
次に、スパースリカレントニューラルネットワークの作成と訓練を継続し、その基礎となる任意の構造の性能とグラフ特性の関係を同定する。
論文 参考訳(メタデータ) (2024-07-30T07:24:58Z) - Temporal Spiking Neural Networks with Synaptic Delay for Graph Reasoning [91.29876772547348]
スパイキングニューラルネットワーク(SNN)は、生物学的にインスパイアされたニューラルネットワークモデルとして研究されている。
本稿では,SNNがシナプス遅延と時間符号化とを併用すると,グラフ推論の実行(知識)に長けていることを明らかにする。
論文 参考訳(メタデータ) (2024-05-27T05:53:30Z) - A survey on learning models of spiking neural membrane systems and spiking neural networks [0.0]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、特定の脳のような特性を持つ、生物学的にインスパイアされたニューラルネットワークのモデルである。
SNNでは、スパイクトレインとスパイクトレインを通してニューロン間の通信が行われる。
SNPSは形式的オートマトン原理に基づくSNNの分岐と見なすことができる。
論文 参考訳(メタデータ) (2024-03-27T14:26:41Z) - Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
エージェントが制御する多次元決定論的ポリシーを学習する必要があるタスクに焦点をあてる。
既存のスパイクベースのRL法は、SNNの出力として発火率を取り、完全に接続された層を通して連続的なアクション空間(つまり決定論的なポリシー)を表すように変換する。
浮動小数点行列操作を伴わない完全にスパイクするアクターネットワークを開発するため,昆虫に見られる非スパイク介在ニューロンからインスピレーションを得た。
論文 参考訳(メタデータ) (2024-01-09T07:31:34Z) - Deep Pulse-Coupled Neural Networks [31.65350290424234]
ニューラルネットワーク(SNN)は、ニューロンを利用して脳の情報処理機構をキャプチャする。
本研究では、複雑な力学、すなわちパルス結合型ニューラルネットワーク(PCNN)を用いた、より生物学的に実証可能なニューラルモデルを活用する。
我々は、SNNでよく使われるLIFニューロンをPCNNニューロンに置き換えることで、ディープパルス結合ニューラルネットワーク(DPCNN)を構築する。
論文 参考訳(メタデータ) (2023-12-24T08:26:00Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Exploiting Noise as a Resource for Computation and Learning in Spiking
Neural Networks [32.0086664373154]
本研究では,雑音型スパイクニューラルネットワーク(NSNN)とノイズ駆動学習規則(NDL)を紹介する。
NSNNは、スケーラブルでフレキシブルで信頼性の高い計算をもたらす理論的なフレームワークを提供する。
論文 参考訳(メタデータ) (2023-05-25T13:21:26Z) - Neuroevolution of a Recurrent Neural Network for Spatial and Working
Memory in a Simulated Robotic Environment [57.91534223695695]
我々は,ラットで観察される行動と神経活動を再現する進化的アルゴリズムを用いて,生物学的に有意なリカレントニューラルネットワーク(RNN)でウェイトを進化させた。
提案手法は, 進化したRNNの動的活動が, 興味深く複雑な認知行動をどのように捉えているかを示す。
論文 参考訳(メタデータ) (2021-02-25T02:13:52Z) - Combining Spiking Neural Network and Artificial Neural Network for
Enhanced Image Classification [1.8411688477000185]
生物学的脳シナプスによく似たSNN(spiking neural Network)は、低消費電力のために注目を集めている。
我々は、関係する性能を改善する汎用ハイブリッドニューラルネットワーク(hnn)を構築した。
論文 参考訳(メタデータ) (2021-02-21T12:03:16Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
本稿では,RNNの入出力動作だけでなく,内部ネットワークのダイナミクスも学習できる新しいトレーニング戦略を提案する。
提案手法は、RNNを訓練し、生理学的にインスパイアされた神経モデルの内部ダイナミクスと出力信号を同時に再現する。
注目すべきは、トレーニングアルゴリズムがニューロンの小さなサブセットの活性に依存する場合であっても、内部動力学の再現が成功することである。
論文 参考訳(メタデータ) (2020-05-05T14:16:54Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。