論文の概要: A survey on learning models of spiking neural membrane systems and spiking neural networks
- arxiv url: http://arxiv.org/abs/2403.18609v1
- Date: Wed, 27 Mar 2024 14:26:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 16:38:49.149228
- Title: A survey on learning models of spiking neural membrane systems and spiking neural networks
- Title(参考訳): スパイキング神経膜システムとスパイキング神経ネットワークの学習モデルに関する研究
- Authors: Prithwineel Paul, Petr Sosik, Lucie Ciencialova,
- Abstract要約: スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、特定の脳のような特性を持つ、生物学的にインスパイアされたニューラルネットワークのモデルである。
SNNでは、スパイクトレインとスパイクトレインを通してニューロン間の通信が行われる。
SNPSは形式的オートマトン原理に基づくSNNの分岐と見なすことができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spiking neural networks (SNN) are a biologically inspired model of neural networks with certain brain-like properties. In the past few decades, this model has received increasing attention in computer science community, owing also to the successful phenomenon of deep learning. In SNN, communication between neurons takes place through the spikes and spike trains. This differentiates these models from the ``standard'' artificial neural networks (ANN) where the frequency of spikes is replaced by real-valued signals. Spiking neural P systems (SNPS) can be considered a branch of SNN based more on the principles of formal automata, with many variants developed within the framework of the membrane computing theory. In this paper, we first briefly compare structure and function, advantages and drawbacks of SNN and SNPS. A key part of the article is a survey of recent results and applications of machine learning and deep learning models of both SNN and SNPS formalisms.
- Abstract(参考訳): スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、特定の脳のような特性を持つ、生物学的にインスパイアされたニューラルネットワークのモデルである。
過去数十年間、このモデルは深層学習の成功により、コンピュータサイエンスコミュニティで注目を集めてきた。
SNNでは、スパイクトレインとスパイクトレインを通してニューロン間の通信が行われる。
これはこれらのモデルを、スパイクの頻度を実数値信号に置き換える‘標準’人工ニューラルネットワーク(ANN)と区別する。
スパイキングニューラルPシステム(SNPS)は、より形式的オートマトン原理に基づくSNNの分岐と見なすことができ、膜計算理論の枠組みの中で多くの変種が発達している。
本稿では,SNN と SNPS の構造,機能,利点,欠点を,まず簡単に比較する。
この記事では、SNNおよびSNPS形式の両方の機械学習およびディープラーニングモデルの最近の結果と応用について調査する。
関連論文リスト
- Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime [52.00917519626559]
本稿では、ニューラルネットワークの2つのモデルと、任意の幅、深さ、トポロジーのニューラルネットワークに適用可能なトレーニングについて述べる。
また、局所外在性神経核(LeNK)の観点から、非正規化勾配降下を伴う階層型ニューラルネットワークトレーニングのための正確な表現子理論を提示する。
この表現論は、ニューラルネットワークトレーニングにおける高次統計学の役割と、ニューラルネットワークのカーネルモデルにおけるカーネル進化の影響について洞察を与える。
論文 参考訳(メタデータ) (2024-05-24T06:30:36Z) - Random-coupled Neural Network [17.53731608985241]
パルス結合ニューラルネットワーク(PCNN)は、コンピュータビジョンとニューラルネットワークの分野における人間の脳の特徴を模倣するためのよく応用されたモデルである。
本研究では,ランダム結合ニューラルネットワーク(RCNN)を提案する。
ランダム不活性化プロセスを通じて、PCNNのニューロモルフィックコンピューティングの困難を克服する。
論文 参考訳(メタデータ) (2024-03-26T09:13:06Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
スパイキングニューラルネットワーク(SNN)は、高エネルギー効率のニューロモルフィックチップに脳にインスパイアされたインテリジェンスを実現することを目的としている。
我々は、ニューロモルフィックデータセットの事前処理、深層SNNの構築、パラメータの最適化、およびニューロモルフィックチップへのSNNのデプロイのためのフルスタックツールキットをコントリビュートする。
論文 参考訳(メタデータ) (2023-10-25T13:15:17Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - Linear Leaky-Integrate-and-Fire Neuron Model Based Spiking Neural
Networks and Its Mapping Relationship to Deep Neural Networks [7.840247953745616]
スパイキングニューラルネットワーク(SNN)は、生物学的可視性や教師なし学習能力など、脳にインスパイアされた機械学習アルゴリズムである。
本稿では,リニアリーキー・インテグレート・アンド・ファイア・モデル(LIF/SNN)の生物学的パラメータとReLU-AN/Deep Neural Networks(DNN)のパラメータとの正確な数学的マッピングを確立する。
論文 参考訳(メタデータ) (2022-05-31T17:02:26Z) - Deep Learning in Spiking Phasor Neural Networks [0.6767885381740952]
スパイキングニューラルネットワーク(SNN)は、低レイテンシで低消費電力のニューロモルフィックハードウェアで使用するために、ディープラーニングコミュニティの注目を集めている。
本稿では,Spking Phasor Neural Networks(SPNN)を紹介する。
SPNNは複雑に評価されたディープニューラルネットワーク(DNN)に基づいており、スパイク時間による位相を表す。
論文 参考訳(メタデータ) (2022-04-01T15:06:15Z) - Improving Surrogate Gradient Learning in Spiking Neural Networks via
Regularization and Normalization [0.0]
スパイキングニューラルネットワーク(SNN)は、ディープラーニングで使用される古典的ネットワークとは異なる。
SNNは低消費電力のニューロモルフィックチップに実装できるため、AI技術にアピールしている。
論文 参考訳(メタデータ) (2021-12-13T15:24:33Z) - Spiking Neural Networks -- Part I: Detecting Spatial Patterns [38.518936229794214]
Spiking Neural Networks(SNN)は生物学的にインスパイアされた機械学習モデルで、バイナリとスパーススパイキング信号をイベント駆動のオンラインな方法で処理する動的ニューラルモデルに基づいている。
SNNは、学習と推論のためのエネルギー効率の良いコプロセッサとして出現しているニューロモルフィックコンピューティングプラットフォーム上で実装することができる。
論文 参考訳(メタデータ) (2020-10-27T11:37:22Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。