Boosting Few-Shot Learning with Disentangled Self-Supervised Learning and Meta-Learning for Medical Image Classification
- URL: http://arxiv.org/abs/2403.17530v1
- Date: Tue, 26 Mar 2024 09:36:20 GMT
- Title: Boosting Few-Shot Learning with Disentangled Self-Supervised Learning and Meta-Learning for Medical Image Classification
- Authors: Eva Pachetti, Sotirios A. Tsaftaris, Sara Colantonio,
- Abstract summary: We present a strategy for improving the performance and generalization capabilities of models trained in low-data regimes.
The proposed method starts with a pre-training phase, where features learned in a self-supervised learning setting are disentangled to improve the robustness of the representations for downstream tasks.
We then introduce a meta-fine-tuning step, leveraging related classes between meta-training and meta-testing phases but varying the level.
- Score: 8.975676404678374
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background and objective: Employing deep learning models in critical domains such as medical imaging poses challenges associated with the limited availability of training data. We present a strategy for improving the performance and generalization capabilities of models trained in low-data regimes. Methods: The proposed method starts with a pre-training phase, where features learned in a self-supervised learning setting are disentangled to improve the robustness of the representations for downstream tasks. We then introduce a meta-fine-tuning step, leveraging related classes between meta-training and meta-testing phases but varying the granularity level. This approach aims to enhance the model's generalization capabilities by exposing it to more challenging classification tasks during meta-training and evaluating it on easier tasks but holding greater clinical relevance during meta-testing. We demonstrate the effectiveness of the proposed approach through a series of experiments exploring several backbones, as well as diverse pre-training and fine-tuning schemes, on two distinct medical tasks, i.e., classification of prostate cancer aggressiveness from MRI data and classification of breast cancer malignity from microscopic images. Results: Our results indicate that the proposed approach consistently yields superior performance w.r.t. ablation experiments, maintaining competitiveness even when a distribution shift between training and evaluation data occurs. Conclusion: Extensive experiments demonstrate the effectiveness and wide applicability of the proposed approach. We hope that this work will add another solution to the arsenal of addressing learning issues in data-scarce imaging domains.
Related papers
- Jumpstarting Surgical Computer Vision [2.7396997668655163]
We employ self-supervised learning to flexibly leverage diverse surgical datasets.
We study phase recognition and critical view of safety in laparoscopic cholecystectomy and laparoscopic hysterectomy.
The composition of pre-training datasets can severely affect the effectiveness of SSL methods for various downstream tasks.
arXiv Detail & Related papers (2023-12-10T18:54:16Z) - Causality-Driven One-Shot Learning for Prostate Cancer Grading from MRI [1.049712834719005]
We present a novel method to automatically classify medical images that learns and leverages weak causal signals in the image.
Our framework consists of a convolutional neural network backbone and a causality-extractor module.
Our findings show that causal relationships among features play a crucial role in enhancing the model's ability to discern relevant information.
arXiv Detail & Related papers (2023-09-19T16:08:33Z) - Data Augmentation-Based Unsupervised Domain Adaptation In Medical
Imaging [0.709016563801433]
We propose an unsupervised method for robust domain adaptation in brain MRI segmentation by leveraging MRI-specific augmentation techniques.
The results show that our proposed approach achieves high accuracy, exhibits broad applicability, and showcases remarkable robustness against domain shift in various tasks.
arXiv Detail & Related papers (2023-08-08T17:00:11Z) - MedFMC: A Real-world Dataset and Benchmark For Foundation Model
Adaptation in Medical Image Classification [41.16626194300303]
Foundation models, often pre-trained with large-scale data, have achieved paramount success in jump-starting various vision and language applications.
Recent advances further enable adapting foundation models in downstream tasks efficiently using only a few training samples.
Yet, the application of such learning paradigms in medical image analysis remains scarce due to the shortage of publicly accessible data and benchmarks.
arXiv Detail & Related papers (2023-06-16T01:46:07Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
In this paper, we collect a series of MedISeg tricks for different model implementation phases.
We experimentally explore the effectiveness of these tricks on consistent baselines.
We also open-sourced a strong MedISeg repository, where each component has the advantage of plug-and-play.
arXiv Detail & Related papers (2022-09-21T12:30:05Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Continual Active Learning Using Pseudo-Domains for Limited Labelling
Resources and Changing Acquisition Characteristics [2.6105699925188257]
Machine learning in medical imaging during clinical routine is impaired by changes in scanner protocols, hardware, or policies.
We propose a method for continual active learning operating on a stream of medical images in a multi-scanner setting.
arXiv Detail & Related papers (2021-11-25T13:11:49Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
We develop a novel automatic learning-based data augmentation method for medical image segmentation.
In our method, we innovatively combine the data augmentation module and the subsequent segmentation module in an end-to-end training manner with a consistent loss.
We extensively evaluated our method on CT kidney tumor segmentation which validated the promising results of our method.
arXiv Detail & Related papers (2020-02-22T14:10:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.