Improving the generalization of deep learning models in the segmentation of mammography images
- URL: http://arxiv.org/abs/2503.22052v1
- Date: Fri, 28 Mar 2025 00:11:00 GMT
- Title: Improving the generalization of deep learning models in the segmentation of mammography images
- Authors: Jan Hurtado, Joao P. Maia, Cesar A. Sierra-Franco, Alberto Raposo,
- Abstract summary: The segmentation of landmark structures in mammography images can aid the medical assessment in the evaluation of cancer risk.<n>We introduce a series of data-centric strategies aimed at enriching the training data for deep learning-based segmentation.<n>Our approach involves augmenting the training samples through annotation-guided image intensity manipulation and style transfer.
- Score: 0.33748750222488655
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mammography stands as the main screening method for detecting breast cancer early, enhancing treatment success rates. The segmentation of landmark structures in mammography images can aid the medical assessment in the evaluation of cancer risk and the image acquisition adequacy. We introduce a series of data-centric strategies aimed at enriching the training data for deep learning-based segmentation of landmark structures. Our approach involves augmenting the training samples through annotation-guided image intensity manipulation and style transfer to achieve better generalization than standard training procedures. These augmentations are applied in a balanced manner to ensure the model learns to process a diverse range of images generated by different vendor equipments while retaining its efficacy on the original data. We present extensive numerical and visual results that demonstrate the superior generalization capabilities of our methods when compared to the standard training. For this evaluation, we consider a large dataset that includes mammography images generated by different vendor equipments. Further, we present complementary results that show both the strengths and limitations of our methods across various scenarios. The accuracy and robustness demonstrated in the experiments suggest that our method is well-suited for integration into clinical practice.
Related papers
- Boosting Few-Shot Learning with Disentangled Self-Supervised Learning and Meta-Learning for Medical Image Classification [8.975676404678374]
We present a strategy for improving the performance and generalization capabilities of models trained in low-data regimes.
The proposed method starts with a pre-training phase, where features learned in a self-supervised learning setting are disentangled to improve the robustness of the representations for downstream tasks.
We then introduce a meta-fine-tuning step, leveraging related classes between meta-training and meta-testing phases but varying the level.
arXiv Detail & Related papers (2024-03-26T09:36:20Z) - Sam-Guided Enhanced Fine-Grained Encoding with Mixed Semantic Learning
for Medical Image Captioning [12.10183458424711]
We present a novel medical image captioning method guided by the segment anything model (SAM)
Our approach employs a distinctive pre-training strategy with mixed semantic learning to simultaneously capture both the overall information and finer details within medical images.
arXiv Detail & Related papers (2023-11-02T05:44:13Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - Self-supervised Learning from 100 Million Medical Images [13.958840691105992]
We propose a method for self-supervised learning of rich image features based on contrastive learning and online feature clustering.
We leverage large training datasets of over 100,000,000 medical images of various modalities, including radiography, computed tomography (CT), magnetic resonance (MR) imaging and ultrasonography.
We highlight a number of advantages of this strategy on challenging image assessment problems in radiography, CT and MR.
arXiv Detail & Related papers (2022-01-04T18:27:04Z) - Domain Generalization for Mammography Detection via Multi-style and
Multi-view Contrastive Learning [47.30824944649112]
A new contrastive learning scheme is developed to augment the generalization capability of deep learning model to various vendors with limited resources.
The backbone network is trained with a multi-style and multi-view unsupervised self-learning scheme for the embedding of invariant features to various vendor-styles.
The experimental results suggest that our approach can effectively improve detection performance on both seen and unseen domains.
arXiv Detail & Related papers (2021-11-21T14:29:50Z) - Evaluation of Complexity Measures for Deep Learning Generalization in
Medical Image Analysis [77.34726150561087]
PAC-Bayes flatness-based and path norm-based measures produce the most consistent explanation for the combination of models and data.
We also investigate the use of multi-task classification and segmentation approach for breast images.
arXiv Detail & Related papers (2021-03-04T20:58:22Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Medical Image Harmonization Using Deep Learning Based Canonical Mapping:
Toward Robust and Generalizable Learning in Imaging [4.396671464565882]
We propose a new paradigm in which data from a diverse range of acquisition conditions are "harmonized" to a common reference domain.
We test this approach on two example problems, namely MRI-based brain age prediction and classification of schizophrenia.
arXiv Detail & Related papers (2020-10-11T22:01:37Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.