Healthcare Data Governance, Privacy, and Security - A Conceptual Framework
- URL: http://arxiv.org/abs/2403.17648v1
- Date: Tue, 26 Mar 2024 12:29:56 GMT
- Title: Healthcare Data Governance, Privacy, and Security - A Conceptual Framework
- Authors: Amen Faridoon, M. Tahar Kechadi,
- Abstract summary: The abundance of data has transformed the world in every aspect.
Despite all these advances, privacy and security remain critical concerns of the healthcare industry.
We propose a conceptual privacy and security driven healthcare data governance framework.
- Score: 0.4972323953932129
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The abundance of data has transformed the world in every aspect. It has become the core element in decision making, problem solving, and innovation in almost all areas of life, including business, science, healthcare, education, and many others. Despite all these advances, privacy and security remain critical concerns of the healthcare industry. It is important to note that healthcare data can also be a liability if it is not managed correctly. This data mismanagement can have severe consequences for patients and healthcare organisations, including patient safety, legal liability, damage to reputation, financial loss, and operational inefficiency. Healthcare organisations must comply with a range of regulations to protect patient data. We perform a classification of data governance elements or components in a manner that thoroughly assesses the healthcare data chain from a privacy and security standpoint. After deeply analysing the existing literature, we propose a conceptual privacy and security driven healthcare data governance framework.
Related papers
- The Gradient of Health Data Privacy [15.417809900388262]
This paper introduces a novel "privacy gradient" approach to health data governance.
Our multidimensional concept considers factors such as data sensitivity, stakeholder relationships, purpose of use, and temporal aspects.
We demonstrate how this approach can address critical privacy challenges in diverse healthcare settings worldwide.
arXiv Detail & Related papers (2024-10-01T17:35:18Z) - A Qualitative Analysis Framework for mHealth Privacy Practices [0.0]
This paper introduces a novel framework for the qualitative evaluation of privacy practices in mHealth apps.
Our investigation encompasses an analysis of 152 leading mHealth apps on the Android platform.
Our findings indicate persistent issues with negligence and misuse of sensitive user information.
arXiv Detail & Related papers (2024-05-28T08:57:52Z) - Healthcare Security Breaches in the United States: Insights and their
Socio-Technical Implications [1.0704308511937222]
This research examines the pivotal role of human behavior in the realm of healthcare data management.
An in-depth analysis of security breaches in the United States from 2009 to the present elucidates the dominance of human-induced security breaches.
arXiv Detail & Related papers (2023-11-07T02:20:31Z) - White paper on cybersecurity in the healthcare sector. The HEIR solution [1.3717071154980571]
Patient data, including medical records and financial information, are at risk, potentially leading to identity theft and patient safety concerns.
The HEIR project offers a comprehensive cybersecurity approach, promoting security features from various regulatory frameworks.
These measures aim to enhance digital health security and protect sensitive patient data while facilitating secure data access and privacy-aware techniques.
arXiv Detail & Related papers (2023-10-16T07:27:57Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
We first design a user-centric privacy-preserving framework based on decentralized Federated Learning (FL) for healthcare metaverses.
We then utilize Age of Information (AoI) as an effective data-freshness metric and propose an AoI-based contract theory model under Prospect Theory (PT) to motivate sensing data sharing.
arXiv Detail & Related papers (2023-07-29T12:54:03Z) - The Design and Implementation of a National AI Platform for Public
Healthcare in Italy: Implications for Semantics and Interoperability [62.997667081978825]
The Italian National Health Service is adopting Artificial Intelligence through its technical agencies.
Such a vast programme requires special care in formalising the knowledge domain.
Questions have been raised about the impact that AI could have on patients, practitioners, and health systems.
arXiv Detail & Related papers (2023-04-24T08:00:02Z) - Auditing and Generating Synthetic Data with Controllable Trust Trade-offs [54.262044436203965]
We introduce a holistic auditing framework that comprehensively evaluates synthetic datasets and AI models.
It focuses on preventing bias and discrimination, ensures fidelity to the source data, assesses utility, robustness, and privacy preservation.
We demonstrate the framework's effectiveness by auditing various generative models across diverse use cases.
arXiv Detail & Related papers (2023-04-21T09:03:18Z) - Trustworthy Transparency by Design [57.67333075002697]
We propose a transparency framework for software design, incorporating research on user trust and experience.
Our framework enables developing software that incorporates transparency in its design.
arXiv Detail & Related papers (2021-03-19T12:34:01Z) - Second layer data governance for permissioned blockchains: the privacy
management challenge [58.720142291102135]
In pandemic situations, such as the COVID-19 and Ebola outbreak, the action related to sharing health data is crucial to avoid the massive infection and decrease the number of deaths.
In this sense, permissioned blockchain technology emerges to empower users to get their rights providing data ownership, transparency, and security through an immutable, unified, and distributed database ruled by smart contracts.
arXiv Detail & Related papers (2020-10-22T13:19:38Z) - Precision Health Data: Requirements, Challenges and Existing Techniques
for Data Security and Privacy [6.911121051195788]
This paper explores the regulations, ethical guidelines around the world, and domain-specific needs.
It presents the requirements and investigates the associated challenges.
It illustrates the best available techniques for precision health data security and privacy with a conceptual system model.
arXiv Detail & Related papers (2020-08-24T22:17:32Z) - COVI White Paper [67.04578448931741]
Contact tracing is an essential tool to change the course of the Covid-19 pandemic.
We present an overview of the rationale, design, ethical considerations and privacy strategy of COVI,' a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada.
arXiv Detail & Related papers (2020-05-18T07:40:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.