論文の概要: Optimization-based Prompt Injection Attack to LLM-as-a-Judge
- arxiv url: http://arxiv.org/abs/2403.17710v2
- Date: Sat, 24 Aug 2024 13:33:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 23:56:35.821404
- Title: Optimization-based Prompt Injection Attack to LLM-as-a-Judge
- Title(参考訳): LLM-as-a-Judgeに対する最適化型プロンプトインジェクション攻撃
- Authors: Jiawen Shi, Zenghui Yuan, Yinuo Liu, Yue Huang, Pan Zhou, Lichao Sun, Neil Zhenqiang Gong,
- Abstract要約: LLM-as-a-Judgeは、大きな言語モデル(LLM)を使用して、ある質問に対する候補セットから最適な応答を選択する。
LLM-as-a-Judgeに対する最適化に基づくプロンプトインジェクション攻撃であるJiceDeceiverを提案する。
評価の結果,JiceDeceiveは既存のプロンプトインジェクション攻撃よりも効果的であることがわかった。
- 参考スコア(独自算出の注目度): 78.20257854455562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LLM-as-a-Judge uses a large language model (LLM) to select the best response from a set of candidates for a given question. LLM-as-a-Judge has many applications such as LLM-powered search, reinforcement learning with AI feedback (RLAIF), and tool selection. In this work, we propose JudgeDeceiver, an optimization-based prompt injection attack to LLM-as-a-Judge. JudgeDeceiver injects a carefully crafted sequence into an attacker-controlled candidate response such that LLM-as-a-Judge selects the candidate response for an attacker-chosen question no matter what other candidate responses are. Specifically, we formulate finding such sequence as an optimization problem and propose a gradient based method to approximately solve it. Our extensive evaluation shows that JudgeDeceive is highly effective, and is much more effective than existing prompt injection attacks that manually craft the injected sequences and jailbreak attacks when extended to our problem. We also show the effectiveness of JudgeDeceiver in three case studies, i.e., LLM-powered search, RLAIF, and tool selection. Moreover, we consider defenses including known-answer detection, perplexity detection, and perplexity windowed detection. Our results show these defenses are insufficient, highlighting the urgent need for developing new defense strategies.
- Abstract(参考訳): LLM-as-a-Judgeは、大きな言語モデル(LLM)を使用して、ある質問に対する候補セットから最適な応答を選択する。
LLM-as-a-Judgeには、LLMを使った検索、AIフィードバックによる強化学習(RLAIF)、ツールの選択など、多くの応用がある。
本稿では,LLM-as-a-Judgeに対する最適化に基づくプロンプトインジェクション攻撃であるJiceDeceiverを提案する。
ジャッジデシーバーは、LLM-as-a-Judgeが攻撃者長質問に対する候補応答を他の候補応答が何であれ選択するように、攻撃者制御された候補応答に慎重に作成されたシーケンスを注入する。
具体的には、最適化問題としてそのようなシーケンスを定式化し、近似解法として勾配法を提案する。
我々の広範な評価によると、JiceDeceiveは極めて効果的であり、既存のインジェクションインジェクションアタックよりもはるかに効果的であり、私たちの問題に拡張された時に、手動でインジェクションシーケンスとジェイルブレイクアタックを作成できる。
また,LLMを用いた検索,RLAIF,ツール選択の3つのケーススタディにおいて,JiceDeceiverの有効性を示す。
さらに, 既知の問合せ検出, パープレキシティ検出, パープレキシティウィンドウ検出などの防御策も検討した。
以上の結果から,これらの防衛戦略は不十分であり,新たな防衛戦略開発への緊急の必要性が浮き彫りにされている。
関連論文リスト
- Fine-tuned Large Language Models (LLMs): Improved Prompt Injection Attacks Detection [6.269725911814401]
大きな言語モデル(LLM)は、幅広い言語ベースのタスクに対処する能力が大きく進歩しているため、人気ツールになりつつある。
しかし、LSMのアプリケーションはインジェクション攻撃に対して非常に脆弱であり、致命的な問題を引き起こす。
このプロジェクトでは,インジェクションのインジェクション攻撃に関連するセキュリティ脆弱性について検討する。
論文 参考訳(メタデータ) (2024-10-28T00:36:21Z) - Aligning LLMs to Be Robust Against Prompt Injection [55.07562650579068]
インジェクション攻撃に対してLCMをより堅牢にするための強力なツールとしてアライメントが有効であることを示す。
私たちのメソッド -- SecAlign -- は、最初に、プロンプトインジェクション攻撃をシミュレートしてアライメントデータセットを構築します。
実験の結果,SecAlign は LLM を大幅に強化し,モデルの実用性に悪影響を及ぼすことが示された。
論文 参考訳(メタデータ) (2024-10-07T19:34:35Z) - Human-Interpretable Adversarial Prompt Attack on Large Language Models with Situational Context [49.13497493053742]
本研究は,無意味な接尾辞攻撃を状況駆動型文脈書き換えによって意味のあるプロンプトに変換することを検討する。
我々は、独立して意味のある敵の挿入と映画から派生した状況を組み合わせて、LLMを騙せるかどうかを確認します。
当社のアプローチでは,オープンソースとプロプライエタリなLLMの両方で,状況駆動型攻撃を成功させることが実証されている。
論文 参考訳(メタデータ) (2024-07-19T19:47:26Z) - QROA: A Black-Box Query-Response Optimization Attack on LLMs [2.7624021966289605]
大規模言語モデル(LLM)は近年人気が高まっているが、操作時に有害なコンテンツを生成する能力を持っている。
本研究は,問合せのみの相互作用を通じてLCMを利用する最適化戦略であるクエリ応答最適化攻撃(QROA)を紹介する。
論文 参考訳(メタデータ) (2024-06-04T07:27:36Z) - Prompt Optimization with Human Feedback [69.95991134172282]
人間のフィードバックによる迅速な最適化問題(POHF)について検討する。
我々は自動POHF(Automatic POHF)というアルゴリズムを導入する。
その結果、APOHFは、少数の好みフィードバックインスタンスを用いて、効率的に適切なプロンプトを見つけることができることがわかった。
論文 参考訳(メタデータ) (2024-05-27T16:49:29Z) - Prompt Leakage effect and defense strategies for multi-turn LLM interactions [95.33778028192593]
システムプロンプトの漏洩は知的財産を侵害し、攻撃者に対する敵の偵察として機能する可能性がある。
我々は, LLM sycophancy 効果を利用して, 平均攻撃成功率 (ASR) を17.7%から86.2%に高めるユニークな脅威モデルを構築した。
7つのブラックボックス防衛戦略の緩和効果と、漏洩防止のためのオープンソースモデルを微調整する。
論文 参考訳(メタデータ) (2024-04-24T23:39:58Z) - AdvPrompter: Fast Adaptive Adversarial Prompting for LLMs [51.217126257318924]
本稿では,AdvPrompterと呼ばれる新たな大規模言語モデルを用いて,人間可読な逆数プロンプトを数秒で生成する手法を提案する。
我々は、ターゲットLLMの勾配にアクセスする必要がない新しいアルゴリズムを用いてAdvPrompterを訓練する。
訓練されたAdvPrompterは、TargetLLMを誘引して有害な応答を与えるように、意味を変えずに入力命令を無効にする接尾辞を生成する。
論文 参考訳(メタデータ) (2024-04-21T22:18:13Z) - CyberSecEval 2: A Wide-Ranging Cybersecurity Evaluation Suite for Large Language Models [6.931433424951554]
大規模言語モデル(LLM)は新たなセキュリティリスクを導入するが、これらのリスクを計測し、削減するための包括的な評価スイートはほとんどない。
LLMのセキュリティリスクと能力を定量化する新しいベンチマークであるBenchmarkNameを提案する。
我々は,GPT-4,Mistral,Meta Llama 370B-Instruct,Code Llamaを含む複数のSOTA (State-of-the-art) LLMを評価した。
論文 参考訳(メタデータ) (2024-04-19T20:11:12Z) - Jailbreaker in Jail: Moving Target Defense for Large Language Models [4.426665953648274]
大規模言語モデル(LLM)は敵攻撃に対して脆弱である。
LLMは非倫理的な答えを提示することで「無害」に失敗するか、意味のある答えを拒むことで「有害」に失敗する。
有効性と無害性を両立させるため,移動目標防御(MTD)強化LLMシステムを設計した。
論文 参考訳(メタデータ) (2023-10-03T20:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。