論文の概要: CheatAgent: Attacking LLM-Empowered Recommender Systems via LLM Agent
- arxiv url: http://arxiv.org/abs/2504.13192v2
- Date: Thu, 24 Apr 2025 02:16:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.58909
- Title: CheatAgent: Attacking LLM-Empowered Recommender Systems via LLM Agent
- Title(参考訳): CheatAgent: LLMエージェントによるLLMエミュレータシステムへの攻撃
- Authors: Liang-bo Ning, Shijie Wang, Wenqi Fan, Qing Li, Xin Xu, Hao Chen, Feiran Huang,
- Abstract要約: 大言語モデル(LLM)を利用したレコメンデーションシステム(RecSys)は、パーソナライズされたユーザーエクスペリエンスに大きな進歩をもたらした。
LLMの人間的な能力を活用して、CheatAgentと呼ばれる新たな攻撃フレームワークを提案する。
提案手法は,入力修正の最小化による最大衝撃に対する挿入位置をまず同定する。
- 参考スコア(独自算出の注目度): 32.958798200220286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Large Language Model (LLM)-empowered recommender systems (RecSys) have brought significant advances in personalized user experience and have attracted considerable attention. Despite the impressive progress, the research question regarding the safety vulnerability of LLM-empowered RecSys still remains largely under-investigated. Given the security and privacy concerns, it is more practical to focus on attacking the black-box RecSys, where attackers can only observe the system's inputs and outputs. However, traditional attack approaches employing reinforcement learning (RL) agents are not effective for attacking LLM-empowered RecSys due to the limited capabilities in processing complex textual inputs, planning, and reasoning. On the other hand, LLMs provide unprecedented opportunities to serve as attack agents to attack RecSys because of their impressive capability in simulating human-like decision-making processes. Therefore, in this paper, we propose a novel attack framework called CheatAgent by harnessing the human-like capabilities of LLMs, where an LLM-based agent is developed to attack LLM-Empowered RecSys. Specifically, our method first identifies the insertion position for maximum impact with minimal input modification. After that, the LLM agent is designed to generate adversarial perturbations to insert at target positions. To further improve the quality of generated perturbations, we utilize the prompt tuning technique to improve attacking strategies via feedback from the victim RecSys iteratively. Extensive experiments across three real-world datasets demonstrate the effectiveness of our proposed attacking method.
- Abstract(参考訳): 近年,Large Language Model (LLM) を利用したレコメンデーションシステム (RecSys) は,パーソナライズされたユーザエクスペリエンスに大きな進歩をもたらし,注目を集めている。
目覚ましい進歩にもかかわらず、LLMを搭載したRecSysの安全性に関する研究の問題は、まだほとんど未検討のままである。
セキュリティとプライバシの懸念から、攻撃者はシステムの入力と出力のみを監視できるブラックボックスのRecSysを攻撃することに集中することはより現実的である。
しかし、強化学習(RL)エージェントを用いた従来の攻撃アプローチは、複雑なテキスト入力、計画、推論の処理能力に制限があるため、LLMを利用したRecSys攻撃には有効ではない。
一方、LSMは人間のような意思決定過程をシミュレートする優れた能力があるため、RecSysを攻撃するための攻撃エージェントとして機能する前例のない機会を提供する。
そこで本稿では, LLMの人間的能力を利用したCheatAgentと呼ばれる新たな攻撃フレームワークを提案し, LLMをベースとしたエージェントを開発し, LLMを駆使したRecSysを攻撃した。
具体的には,入力修正が最小限である最大衝撃に対する挿入位置をまず同定する。
その後、LLMエージェントは、目標位置に挿入する対向的摂動を生成するように設計されている。
生成した摂動の質をさらに向上するため,攻撃戦略を被害者RecSysからのフィードバックにより反復的に改善する。
実世界の3つのデータセットにまたがる大規模な実験により,提案手法の有効性が示された。
関連論文リスト
- Commercial LLM Agents Are Already Vulnerable to Simple Yet Dangerous Attacks [88.84977282952602]
最近のMLセキュリティ文献は、整列型大規模言語モデル(LLM)に対する攻撃に焦点を当てている。
本稿では,LLMエージェントに特有のセキュリティとプライバシの脆弱性を分析する。
我々は、人気のあるオープンソースおよび商用エージェントに対する一連の実証的な攻撃を行い、その脆弱性の即時的な影響を実証した。
論文 参考訳(メタデータ) (2025-02-12T17:19:36Z) - Targeting the Core: A Simple and Effective Method to Attack RAG-based Agents via Direct LLM Manipulation [4.241100280846233]
大規模言語モデル(LLM)を駆使したAIエージェントは、シームレスで自然な、コンテキスト対応のコミュニケーションを可能にすることによって、人間とコンピュータのインタラクションを変革した。
本稿では,AIエージェント内のLLMコアを標的とした敵攻撃という,重大な脆弱性について検討する。
論文 参考訳(メタデータ) (2024-12-05T18:38:30Z) - Attention Tracker: Detecting Prompt Injection Attacks in LLMs [62.247841717696765]
大型言語モデル (LLM) は様々なドメインに革命をもたらしたが、インジェクション攻撃に弱いままである。
そこで本研究では,特定の注意点が本来の指示から注入指示へと焦点を移す,注意散逸効果の概念を紹介した。
本研究では,アテンション・トラッカーを提案する。アテンション・トラッカーは,インジェクション・アタックを検出するために,インストラクション上の注意パターンを追跡する訓練不要な検出手法である。
論文 参考訳(メタデータ) (2024-11-01T04:05:59Z) - Harnessing Task Overload for Scalable Jailbreak Attacks on Large Language Models [8.024771725860127]
大きな言語モデル(LLM)は、安全メカニズムをバイパスするジェイルブレイク攻撃に対して脆弱なままである。
我々は, LLMの安全性ポリシーの活性化を前提として, 計算資源を占有する新しい拡張性のあるジェイルブレイク攻撃を導入する。
論文 参考訳(メタデータ) (2024-10-05T15:10:01Z) - Robust LLM safeguarding via refusal feature adversarial training [15.76605079209956]
大規模言語モデル(LLM)は、有害な応答を誘発する敵攻撃に対して脆弱である。
本稿では,敵対的訓練を効率的に行う新しいアルゴリズムReFATを提案する。
実験結果から, ReFATは, 広範囲な敵攻撃に対する3つのLLMのロバスト性を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2024-09-30T08:41:39Z) - Purple-teaming LLMs with Adversarial Defender Training [57.535241000787416]
本稿では,PAD(Adversarial Defender Training)を用いたPurple-teaming LLMを提案する。
PADは、赤チーム(アタック)技術と青チーム(セーフティトレーニング)技術を新たに取り入れることで、LSMを保護するために設計されたパイプラインである。
PADは、効果的な攻撃と堅牢な安全ガードレールの確立の両方において、既存のベースラインを著しく上回っている。
論文 参考訳(メタデータ) (2024-07-01T23:25:30Z) - Uncovering Safety Risks of Large Language Models through Concept Activation Vector [13.804245297233454]
大規模言語モデル(LLM)に対する攻撃を誘導する安全概念活性化ベクトル(SCAV)フレームワークについて紹介する。
そこで我々は,攻撃プロンプトと埋め込みレベルの攻撃の両方を生成できるSCAV誘導攻撃法を開発した。
本手法は,トレーニングデータが少なくなるとともに,攻撃成功率と応答品質を著しく向上させる。
論文 参考訳(メタデータ) (2024-04-18T09:46:25Z) - Optimization-based Prompt Injection Attack to LLM-as-a-Judge [78.20257854455562]
LLM-as-a-Judgeは、大きな言語モデル(LLM)を使用して、ある質問に対する候補セットから最適な応答を選択する。
LLM-as-a-Judgeに対する最適化に基づくプロンプトインジェクション攻撃であるJiceDeceiverを提案する。
評価の結果,JiceDeceiveは既存のプロンプトインジェクション攻撃よりも効果的であることがわかった。
論文 参考訳(メタデータ) (2024-03-26T13:58:00Z) - Stealthy Attack on Large Language Model based Recommendation [24.51398285321322]
大規模言語モデル (LLM) はレコメンダシステム (RS) の進歩を推進している。
本研究では,レコメンデーションモデルにLSMを導入することで,項目のテキスト内容に重点を置いているため,新たなセキュリティ脆弱性が生じることを明らかにした。
攻撃者は、テストフェーズ中に単にテキストの内容を変更するだけで、アイテムの露出を大幅に向上させることができることを実証する。
論文 参考訳(メタデータ) (2024-02-18T16:51:02Z) - LoRec: Large Language Model for Robust Sequential Recommendation against Poisoning Attacks [60.719158008403376]
本研究は,リコメンデータシステムにおける未知の不正行為の検出におけるLarge Language Models(LLM)の機能に着目した。
逐次リコメンデータシステムのロバスト性を高めるため,LLM強化を利用した高度なフレームワークであるLoRecを提案する。
総合的な実験により、LoRecは一般的なフレームワークとして、シーケンシャルなレコメンデータシステムの堅牢性を大幅に強化することを示した。
論文 参考訳(メタデータ) (2024-01-31T10:35:53Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
我々は,このような脆弱性のリスクを評価するために,BIPIAと呼ばれる間接的インジェクション攻撃のための最初のベンチマークを導入した。
我々の分析では、LLMが情報コンテキストと動作可能な命令を区別できないことと、外部コンテンツ内での命令の実行を回避できないことの2つの主要な要因を同定した。
ブラックボックスとホワイトボックスという2つの新しい防御機構と、これらの脆弱性に対処するための明確なリマインダーを提案する。
論文 参考訳(メタデータ) (2023-12-21T01:08:39Z) - Attack Prompt Generation for Red Teaming and Defending Large Language
Models [70.157691818224]
大規模言語モデル (LLM) は、有害なコンテンツを生成するためにLSMを誘導するレッド・チーム・アタックの影響を受けやすい。
本稿では、手動と自動の手法を組み合わせて、高品質な攻撃プロンプトを経済的に生成する統合的アプローチを提案する。
論文 参考訳(メタデータ) (2023-10-19T06:15:05Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
大規模言語モデル(LLM)は、様々なアプリケーションに統合されつつある。
本稿では、プロンプトインジェクション攻撃を用いて、攻撃者が元の命令をオーバーライドし、制御を採用する方法を示す。
我々は、コンピュータセキュリティの観点から、影響や脆弱性を体系的に調査する包括的な分類法を導出する。
論文 参考訳(メタデータ) (2023-02-23T17:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。