Invisible Gas Detection: An RGB-Thermal Cross Attention Network and A New Benchmark
- URL: http://arxiv.org/abs/2403.17712v2
- Date: Fri, 6 Sep 2024 06:40:16 GMT
- Title: Invisible Gas Detection: An RGB-Thermal Cross Attention Network and A New Benchmark
- Authors: Jue Wang, Yuxiang Lin, Qi Zhao, Dong Luo, Shuaibao Chen, Wei Chen, Xiaojiang Peng,
- Abstract summary: We present the RGB-Thermal Cross Attention Network (RT-CAN), which employs an RGB-assisted two-stream network architecture to integrate texture information from RGB images and gas area information from thermal images.
Gas-DB is an extensive open-source gas detection database including about 1.3K well-annotated RGB-thermal images with eight variant collection scenes.
- Score: 24.108560366345248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The widespread use of various chemical gases in industrial processes necessitates effective measures to prevent their leakage during transportation and storage, given their high toxicity. Thermal infrared-based computer vision detection techniques provide a straightforward approach to identify gas leakage areas. However, the development of high-quality algorithms has been challenging due to the low texture in thermal images and the lack of open-source datasets. In this paper, we present the RGB-Thermal Cross Attention Network (RT-CAN), which employs an RGB-assisted two-stream network architecture to integrate texture information from RGB images and gas area information from thermal images. Additionally, to facilitate the research of invisible gas detection, we introduce Gas-DB, an extensive open-source gas detection database including about 1.3K well-annotated RGB-thermal images with eight variant collection scenes. Experimental results demonstrate that our method successfully leverages the advantages of both modalities, achieving state-of-the-art (SOTA) performance among RGB-thermal methods, surpassing single-stream SOTA models in terms of accuracy, Intersection of Union (IoU), and F2 metrics by 4.86%, 5.65%, and 4.88%, respectively. The code and data can be found at https://github.com/logic112358/RT-CAN.
Related papers
- Bringing RGB and IR Together: Hierarchical Multi-Modal Enhancement for Robust Transmission Line Detection [67.02804741856512]
We propose a novel Hierarchical Multi-Modal Enhancement Network (HMMEN) that integrates RGB and IR data for robust and accurate TL detection.
Our method introduces two key components: (1) a Mutual Multi-Modal Enhanced Block (MMEB), which fuses and enhances hierarchical RGB and IR feature maps in a coarse-to-fine manner, and (2) a Feature Alignment Block (FAB) that corrects misalignments between decoder outputs and IR feature maps by leveraging deformable convolutions.
arXiv Detail & Related papers (2025-01-25T06:21:06Z) - Thermal and RGB Images Work Better Together in Wind Turbine Damage Detection [13.786915116688965]
Inspection of wind turbine blades (WTBs) is crucial for ensuring their structural integrity and operational efficiency.
Traditional inspection methods can be dangerous and inefficient, prompting the use of unmanned aerial vehicles (UAVs) that access hard-to-reach areas.
We propose a multispectral image composition method that combines thermal and RGB imagery through spatial coordinate transformation.
arXiv Detail & Related papers (2024-12-05T12:32:45Z) - Attentive Multimodal Fusion for Optical and Scene Flow [24.08052492109655]
Existing methods typically rely solely on RGB images or fuse the modalities at later stages.
We propose a novel deep neural network approach named FusionRAFT, which enables early-stage information fusion between sensor modalities.
Our approach exhibits improved robustness in the presence of noise and low-lighting conditions that affect the RGB images.
arXiv Detail & Related papers (2023-07-28T04:36:07Z) - Residual Spatial Fusion Network for RGB-Thermal Semantic Segmentation [19.41334573257174]
Traditional methods mostly use RGB images which are heavily affected by lighting conditions, eg, darkness.
Recent studies show thermal images are robust to the night scenario as a compensating modality for segmentation.
This work proposes a Residual Spatial Fusion Network (RSFNet) for RGB-T semantic segmentation.
arXiv Detail & Related papers (2023-06-17T14:28:08Z) - Does Thermal Really Always Matter for RGB-T Salient Object Detection? [153.17156598262656]
This paper proposes a network named TNet to solve the RGB-T salient object detection (SOD) task.
In this paper, we introduce a global illumination estimation module to predict the global illuminance score of the image.
On the other hand, we introduce a two-stage localization and complementation module in the decoding phase to transfer object localization cue and internal integrity cue in thermal features to the RGB modality.
arXiv Detail & Related papers (2022-10-09T13:50:12Z) - Mirror Complementary Transformer Network for RGB-thermal Salient Object
Detection [16.64781797503128]
RGB-thermal object detection (RGB-T SOD) aims to locate the common prominent objects of an aligned visible and thermal infrared image pair.
In this paper, we propose a novel mirror complementary Transformer network (MCNet) for RGB-T SOD.
Experiments on benchmark and VT723 datasets show that the proposed method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2022-07-07T20:26:09Z) - TBNet:Two-Stream Boundary-aware Network for Generic Image Manipulation
Localization [49.521622399483846]
We propose a novel end-to-end two-stream boundary-aware network (abbreviated as TBNet) for generic image manipulation localization.
The proposed TBNet can significantly outperform state-of-the-art generic image manipulation localization methods in terms of both MCC and F1.
arXiv Detail & Related papers (2021-08-10T08:22:05Z) - Progressively Guided Alternate Refinement Network for RGB-D Salient
Object Detection [63.18846475183332]
We aim to develop an efficient and compact deep network for RGB-D salient object detection.
We propose a progressively guided alternate refinement network to refine it.
Our model outperforms existing state-of-the-art approaches by a large margin.
arXiv Detail & Related papers (2020-08-17T02:55:06Z) - Cascade Graph Neural Networks for RGB-D Salient Object Detection [41.57218490671026]
We study the problem of salient object detection (SOD) for RGB-D images using both color and depth information.
We introduce Cascade Graph Neural Networks(Cas-Gnn),a unified framework which is capable of comprehensively distilling and reasoning the mutual benefits between these two data sources.
Cas-Gnn achieves significantly better performance than all existing RGB-DSOD approaches on several widely-used benchmarks.
arXiv Detail & Related papers (2020-08-07T10:59:04Z) - UC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional
Variational Autoencoders [81.5490760424213]
We propose the first framework (UCNet) to employ uncertainty for RGB-D saliency detection by learning from the data labeling process.
Inspired by the saliency data labeling process, we propose probabilistic RGB-D saliency detection network.
arXiv Detail & Related papers (2020-04-13T04:12:59Z) - Drone-based RGB-Infrared Cross-Modality Vehicle Detection via
Uncertainty-Aware Learning [59.19469551774703]
Drone-based vehicle detection aims at finding the vehicle locations and categories in an aerial image.
We construct a large-scale drone-based RGB-Infrared vehicle detection dataset, termed DroneVehicle.
Our DroneVehicle collects 28, 439 RGB-Infrared image pairs, covering urban roads, residential areas, parking lots, and other scenarios from day to night.
arXiv Detail & Related papers (2020-03-05T05:29:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.