Attentive Multimodal Fusion for Optical and Scene Flow
- URL: http://arxiv.org/abs/2307.15301v1
- Date: Fri, 28 Jul 2023 04:36:07 GMT
- Title: Attentive Multimodal Fusion for Optical and Scene Flow
- Authors: Youjie Zhou, Guofeng Mei, Yiming Wang, Fabio Poiesi, Yi Wan
- Abstract summary: Existing methods typically rely solely on RGB images or fuse the modalities at later stages.
We propose a novel deep neural network approach named FusionRAFT, which enables early-stage information fusion between sensor modalities.
Our approach exhibits improved robustness in the presence of noise and low-lighting conditions that affect the RGB images.
- Score: 24.08052492109655
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an investigation into the estimation of optical and scene
flow using RGBD information in scenarios where the RGB modality is affected by
noise or captured in dark environments. Existing methods typically rely solely
on RGB images or fuse the modalities at later stages, which can result in lower
accuracy when the RGB information is unreliable. To address this issue, we
propose a novel deep neural network approach named FusionRAFT, which enables
early-stage information fusion between sensor modalities (RGB and depth). Our
approach incorporates self- and cross-attention layers at different network
levels to construct informative features that leverage the strengths of both
modalities. Through comparative experiments, we demonstrate that our approach
outperforms recent methods in terms of performance on the synthetic dataset
Flyingthings3D, as well as the generalization on the real-world dataset KITTI.
We illustrate that our approach exhibits improved robustness in the presence of
noise and low-lighting conditions that affect the RGB images. We release the
code, models and dataset at https://github.com/jiesico/FusionRAFT.
Related papers
- Diffusion-based RGB-D Semantic Segmentation with Deformable Attention Transformer [10.982521876026281]
We introduce a diffusion-based framework to address the RGB-D semantic segmentation problem.
We demonstrate that utilizing a Deformable Attention Transformer as the encoder to extract features from depth images effectively captures the characteristics of invalid regions in depth measurements.
arXiv Detail & Related papers (2024-09-23T15:23:01Z) - NIR-Assisted Image Denoising: A Selective Fusion Approach and A Real-World Benchmark Dataset [53.79524776100983]
Leveraging near-infrared (NIR) images to assist visible RGB image denoising shows the potential to address this issue.
Existing works still struggle with taking advantage of NIR information effectively for real-world image denoising.
We propose an efficient Selective Fusion Module (SFM), which can be plug-and-played into the advanced denoising networks.
arXiv Detail & Related papers (2024-04-12T14:54:26Z) - RPEFlow: Multimodal Fusion of RGB-PointCloud-Event for Joint Optical
Flow and Scene Flow Estimation [43.358140897849616]
In this paper, we incorporate RGB images, Point clouds and Events for joint optical flow and scene flow estimation with our proposed multi-stage multimodal fusion model, RPEFlow.
Experiments on both synthetic and real datasets show that our model outperforms the existing state-of-the-art by a wide margin.
arXiv Detail & Related papers (2023-09-26T17:23:55Z) - Chasing Day and Night: Towards Robust and Efficient All-Day Object Detection Guided by an Event Camera [8.673063170884591]
EOLO is a novel object detection framework that achieves robust and efficient all-day detection by fusing both RGB and event modalities.
Our EOLO framework is built based on a lightweight spiking neural network (SNN) to efficiently leverage the asynchronous property of events.
arXiv Detail & Related papers (2023-09-17T15:14:01Z) - Symmetric Uncertainty-Aware Feature Transmission for Depth
Super-Resolution [52.582632746409665]
We propose a novel Symmetric Uncertainty-aware Feature Transmission (SUFT) for color-guided DSR.
Our method achieves superior performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-06-01T06:35:59Z) - Mirror Complementary Transformer Network for RGB-thermal Salient Object
Detection [16.64781797503128]
RGB-thermal object detection (RGB-T SOD) aims to locate the common prominent objects of an aligned visible and thermal infrared image pair.
In this paper, we propose a novel mirror complementary Transformer network (MCNet) for RGB-T SOD.
Experiments on benchmark and VT723 datasets show that the proposed method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2022-07-07T20:26:09Z) - Consistent Depth Prediction under Various Illuminations using Dilated
Cross Attention [1.332560004325655]
We propose to use internet 3D indoor scenes and manually tune their illuminations to render photo-realistic RGB photos and their corresponding depth and BRDF maps.
We perform cross attention on these dilated features to retain the consistency of depth prediction under different illuminations.
Our method is evaluated by comparing it with current state-of-the-art methods on Vari dataset and a significant improvement is observed in experiments.
arXiv Detail & Related papers (2021-12-15T10:02:46Z) - Wild ToFu: Improving Range and Quality of Indirect Time-of-Flight Depth
with RGB Fusion in Challenging Environments [56.306567220448684]
We propose a new learning based end-to-end depth prediction network which takes noisy raw I-ToF signals as well as an RGB image.
We show more than 40% RMSE improvement on the final depth map compared to the baseline approach.
arXiv Detail & Related papers (2021-12-07T15:04:14Z) - Learning Selective Mutual Attention and Contrast for RGB-D Saliency
Detection [145.4919781325014]
How to effectively fuse cross-modal information is the key problem for RGB-D salient object detection.
Many models use the feature fusion strategy but are limited by the low-order point-to-point fusion methods.
We propose a novel mutual attention model by fusing attention and contexts from different modalities.
arXiv Detail & Related papers (2020-10-12T08:50:10Z) - Bi-directional Cross-Modality Feature Propagation with
Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [59.94819184452694]
Depth information has proven to be a useful cue in the semantic segmentation of RGBD images for providing a geometric counterpart to the RGB representation.
Most existing works simply assume that depth measurements are accurate and well-aligned with the RGB pixels and models the problem as a cross-modal feature fusion.
In this paper, we propose a unified and efficient Crossmodality Guided to not only effectively recalibrate RGB feature responses, but also to distill accurate depth information via multiple stages and aggregate the two recalibrated representations alternatively.
arXiv Detail & Related papers (2020-07-17T18:35:24Z) - Cross-Modal Weighting Network for RGB-D Salient Object Detection [76.0965123893641]
We propose a novel Cross-Modal Weighting (CMW) strategy to encourage comprehensive interactions between RGB and depth channels for RGB-D SOD.
Specifically, three RGB-depth interaction modules, named CMW-L, CMW-M and CMW-H, are developed to deal with respectively low-, middle- and high-level cross-modal information fusion.
CMWNet consistently outperforms 15 state-of-the-art RGB-D SOD methods on seven popular benchmarks.
arXiv Detail & Related papers (2020-07-09T16:01:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.