論文の概要: Leave No Patient Behind: Enhancing Medication Recommendation for Rare Disease Patients
- arxiv url: http://arxiv.org/abs/2403.17745v2
- Date: Sun, 11 Aug 2024 07:32:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 23:38:15.618474
- Title: Leave No Patient Behind: Enhancing Medication Recommendation for Rare Disease Patients
- Title(参考訳): 後遺症を伴わない : 重症心疾患患者に対する薬剤的勧告の強化
- Authors: Zihao Zhao, Yi Jing, Fuli Feng, Jiancan Wu, Chongming Gao, Xiangnan He,
- Abstract要約: 本稿では,レアな疾患の正確性を高めるために,ロバストとメディケーションのための高精度勧告(RAREMed)と呼ばれる新しいモデルを提案する。
入力シーケンスを統一したトランスフォーマーエンコーダを使用して、疾患と手続きコードの間の複雑な関係をキャプチャする。
稀な疾患と一般的な疾患の両方に対して正確な薬物セットを提供し、薬の推奨システムにおける不公平を緩和する。
- 参考スコア(独自算出の注目度): 47.68396964741116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medication recommendation systems have gained significant attention in healthcare as a means of providing tailored and effective drug combinations based on patients' clinical information. However, existing approaches often suffer from fairness issues, as recommendations tend to be more accurate for patients with common diseases compared to those with rare conditions. In this paper, we propose a novel model called Robust and Accurate REcommendations for Medication (RAREMed), which leverages the pretrain-finetune learning paradigm to enhance accuracy for rare diseases. RAREMed employs a transformer encoder with a unified input sequence approach to capture complex relationships among disease and procedure codes. Additionally, it introduces two self-supervised pre-training tasks, namely Sequence Matching Prediction (SMP) and Self Reconstruction (SR), to learn specialized medication needs and interrelations among clinical codes. Experimental results on two real-world datasets demonstrate that RAREMed provides accurate drug sets for both rare and common disease patients, thereby mitigating unfairness in medication recommendation systems.
- Abstract(参考訳): 医薬推奨システムは、患者の臨床情報に基づいて、調整された効果的な薬物の組み合わせを提供する手段として、医療において大きな注目を集めている。
しかし, 既往のアプローチは, 稀な疾患の患者に比べて, より正確である傾向があるため, 公平性の問題に悩まされることが多い。
本稿では,レアな疾患の精度を高めるために,事前学習パラダイムを活用したRobust and Accurate Recommendations for Medication (RAREMed) と呼ばれる新しいモデルを提案する。
RAREMedは、入力シーケンスを統一したトランスフォーマーエンコーダを使用して、疾患と手続きコードの間の複雑な関係をキャプチャする。
さらに、SMP(Sequence Matching Prediction)とSR(Self Restruction)という2つの自己指導型事前訓練タスクを導入し、臨床コード間の専門的な薬物ニーズと相互関係を学習する。
2つの実世界のデータセットによる実験結果から、RAREMedは、稀な疾患と一般的な疾患の両方に対して正確な薬物セットを提供しており、医薬品推奨システムにおける不公平さを軽減していることが示された。
関連論文リスト
- Contrastive Learning on Medical Intents for Sequential Prescription Recommendation [7.780844394603662]
Attentive Recommendation with Contrasted Intents (ARCI) は、異なるが共存する時間的経路を、共通の訪問シーケンスで捉えるように設計されている。
評価基準と分類基準の両方を用いて,2つの実世界のデータセットを処方勧告タスクとして実験した。
論文 参考訳(メタデータ) (2024-08-13T20:10:28Z) - CIDGMed: Causal Inference-Driven Medication Recommendation with Enhanced Dual-Granularity Learning [10.60553153370577]
医薬推奨は、患者の長期医療記録を統合し、正確で安全な薬品の組み合わせを提供することを目的としている。
既存の方法では、疾患や引き金や薬物の真の因果関係を深く探ることができないことが多い。
因果推論駆動型デュアルグラニュラリティメディケーション勧告法(CIDGMed)を提案する。
論文 参考訳(メタデータ) (2024-03-01T08:50:27Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Knowledge-Driven New Drug Recommendation [88.35607943144261]
既存の薬物と新薬のギャップを埋めるために, 薬物依存型マルチフェノタイプ数発学習機を開発した。
EDGEは外部薬効知識ベースを用いて偽陰性監視信号を除去する。
その結果, EDGEは, ROC-AUCスコアよりも7.3%向上していることがわかった。
論文 参考訳(メタデータ) (2022-10-11T16:07:52Z) - Conditional Generation Net for Medication Recommendation [73.09366442098339]
医薬推奨は、患者の診断に従って適切な薬セットを提供することを目標としており、これは診療所において重要な課題である。
医薬品群を生成するための新しいコピー・アンド・予測機構を導入した条件生成ネット(COGNet)を提案する。
提案手法を公開MIMICデータセット上で検証し,実験結果から,提案手法が最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-02-14T10:16:41Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - PREMIER: Personalized REcommendation for Medical prescrIptions from
Electronic Records [8.365167718547296]
われわれは、PreMIERと呼ばれる2段階の注意に基づくパーソナライズド医薬品レコメンデーションシステムを設計する。
本システムでは,患者に対する副作用を最小限に抑えるため,薬物間の相互作用を考慮に入れている。
MIMIC-IIIと独自の外来データセットの実験結果から、PreMIERは最先端の医薬品推奨システムより優れていることが示された。
論文 参考訳(メタデータ) (2020-08-28T04:48:32Z) - Learning-based Computer-aided Prescription Model for Parkinson's
Disease: A Data-driven Perspective [61.70045118068213]
我々は、PD患者の症状と、神経科医が提供した処方薬を収集し、データセットを構築した。
そこで我々は、観察された症状と処方薬との関係を学習し、新しいコンピュータ支援処方薬モデルを構築した。
新来の患者に対しては、処方薬モデルにより、観察された症状に対して適切な処方薬を推奨できる(予測)。
論文 参考訳(メタデータ) (2020-07-31T14:34:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。