論文の概要: CIDGMed: Causal Inference-Driven Medication Recommendation with Enhanced Dual-Granularity Learning
- arxiv url: http://arxiv.org/abs/2403.00880v2
- Date: Wed, 30 Oct 2024 05:18:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:22:32.272647
- Title: CIDGMed: Causal Inference-Driven Medication Recommendation with Enhanced Dual-Granularity Learning
- Title(参考訳): CIDGMed: 双極性学習を増強した因果推論駆動医療勧告
- Authors: Shunpan Liang, Xiang Li, Shi Mu, Chen Li, Yu Lei, Yulei Hou, Tengfei Ma,
- Abstract要約: 医薬推奨は、患者の長期医療記録を統合し、正確で安全な薬品の組み合わせを提供することを目的としている。
既存の方法では、疾患や引き金や薬物の真の因果関係を深く探ることができないことが多い。
因果推論駆動型デュアルグラニュラリティメディケーション勧告法(CIDGMed)を提案する。
- 参考スコア(独自算出の注目度): 10.60553153370577
- License:
- Abstract: Medication recommendation aims to integrate patients' long-term health records to provide accurate and safe medication combinations for specific health states. Existing methods often fail to deeply explore the true causal relationships between diseases/procedures and medications, resulting in biased recommendations. Additionally, in medication representation learning, the relationships between information at different granularities of medications, coarse-grained (medication itself) and fine-grained (molecular level), are not effectively integrated, leading to biases in representation learning. To address these limitations, we propose the Causal Inference-driven Dual-Granularity Medication Recommendation method (CIDGMed). Our approach leverages causal inference to uncover the relationships between diseases/procedures and medications, thereby enhancing the rationality and interpretability of recommendations. By integrating coarse-grained medication effects with fine-grained molecular structure information, CIDGMed provides a comprehensive representation of medications. Additionally, we employ a bias correction model during the prediction phase to further refine recommendations, ensuring both accuracy and safety. Through extensive experiments, CIDGMed significantly outperforms current state-of-the-art models across multiple metrics, achieving a 2.54% increase in accuracy, a 3.65% reduction in side effects, and a 39.42% improvement in time efficiency. Additionally, we demonstrate the rationale of CIDGMed through a case study.
- Abstract(参考訳): 治療勧告は、患者の長期の健康記録を統合し、特定の健康状態に対して正確で安全な薬剤の組み合わせを提供することを目的としている。
既存の方法では、疾患や利尿薬と医薬品の真の因果関係を深く調べることができず、結果として推奨に偏っている。
さらに、薬品表現学習では、薬品の粒度の異なる情報、粗い粒度(薬品そのもの)と細かい粒度(分子レベル)の関係は効果的に統合されず、表現学習のバイアスをもたらす。
これらの制約に対処するために、因果推論駆動のデュアルグラニュラリティ・メディケーション・レコメンデーション法(CIDGMed)を提案する。
提案手法は因果推論を利用して,疾患・調達と医薬品の関係を明らかにすることにより,勧告の合理性と解釈可能性を高める。
CIDGMedは、粗粒の薬効と微細な分子構造情報を統合することで、薬物の包括的表現を提供する。
さらに、予測フェーズ中にバイアス補正モデルを用いて、勧告をさらに洗練し、精度と安全性の両立を保証します。
広範な実験を通じて、CIDGMedは複数のメトリクスで現在の最先端モデルを大きく上回り、2.54%の精度向上、3.65%の副作用、39.42%の時間効率向上を実現した。
さらに,ケーススタディを通じてCIDGMの理論的根拠を示す。
関連論文リスト
- drGAT: Attention-Guided Gene Assessment of Drug Response Utilizing a Drug-Cell-Gene Heterogeneous Network [9.637695046701493]
drGATは、薬物に対する感受性を予測するグラフ深層学習モデルである。
drGATは既存のモデルよりも優れた性能を示し、精度は78%、F1スコアは76%、DNA損傷物質は269である。
本手法は薬剤感受性を正確に予測するために有用であり,がん患者の治療に関するバイオマーカーの同定に有用である。
論文 参考訳(メタデータ) (2024-05-14T22:16:52Z) - Leave No Patient Behind: Enhancing Medication Recommendation for Rare Disease Patients [47.68396964741116]
本稿では,レアな疾患の正確性を高めるために,ロバストとメディケーションのための高精度勧告(RAREMed)と呼ばれる新しいモデルを提案する。
入力シーケンスを統一したトランスフォーマーエンコーダを使用して、疾患と手続きコードの間の複雑な関係をキャプチャする。
稀な疾患と一般的な疾患の両方に対して正確な薬物セットを提供し、薬の推奨システムにおける不公平を緩和する。
論文 参考訳(メタデータ) (2024-03-26T14:36:22Z) - StratMed: Relevance Stratification between Biomedical Entities for
Sparsity on Medication Recommendation [9.296433860766165]
StratMedは、長い尾の問題を克服し、スパースデータの完全な学習を実現する成層戦略である。
また、薬品の組み合わせの安全性と正確性に関する相互制約の問題に対処するために、デュアルプロパティネットワークを利用する。
本モデルでは,安全性リスクを15.08%削減し,精度を0.36%向上し,トレーニング時間消費を81.66%削減する。
論文 参考訳(メタデータ) (2023-08-31T14:59:32Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - Knowledge-Driven New Drug Recommendation [88.35607943144261]
既存の薬物と新薬のギャップを埋めるために, 薬物依存型マルチフェノタイプ数発学習機を開発した。
EDGEは外部薬効知識ベースを用いて偽陰性監視信号を除去する。
その結果, EDGEは, ROC-AUCスコアよりも7.3%向上していることがわかった。
論文 参考訳(メタデータ) (2022-10-11T16:07:52Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - SafeDrug: Dual Molecular Graph Encoders for Safe Drug Recommendations [59.590084937600764]
医薬品の分子構造とDDIのモデルを明確に活用するために、SafeDrugというDDI制御可能な薬物推奨モデルを提案する。
ベンチマークデータセットでは、SafeDrugはDDIを19.43%削減し、Jaccardの推奨薬物と実際に処方された薬物の組み合わせの2.88%を改善します。
論文 参考訳(メタデータ) (2021-05-05T00:20:48Z) - A standardized framework for risk-based assessment of treatment effect
heterogeneity in observational healthcare databases [60.07352590494571]
本研究の目的は,この手法を標準化されたスケーラブルなフレームワークを用いて観測環境に拡張することであった。
アンジオテンシン変換酵素阻害薬(ACE)とβ阻害薬の3つの効果と6つの安全性に対する効果を評価することにより,我々の枠組みを実証する。
論文 参考訳(メタデータ) (2020-10-13T14:48:31Z) - Reinforcement learning and Bayesian data assimilation for model-informed
precision dosing in oncology [0.0]
現在の戦略はモデルインフォームドドッキングテーブルで構成されている。
ベイジアンデータ同化と/または強化学習を併用したMIPDのための新しい3つのアプローチを提案する。
これらのアプローチは、致命的グレード4と治療下グレード0のニュートロピーの発生を著しく減少させる可能性がある。
論文 参考訳(メタデータ) (2020-06-01T16:38:27Z) - Drug-Drug Interaction Prediction with Wasserstein Adversarial
Autoencoder-based Knowledge Graph Embeddings [22.562175708415392]
薬物・薬物相互作用のための知識グラフ埋め込みフレームワークを提案する。
本フレームワークでは, 高品質な負のサンプルを生成するために, オートエンコーダを用いる。
判別器は、正三重項と負三重項の両方に基づいて薬物と相互作用の埋め込みを学習する。
論文 参考訳(メタデータ) (2020-04-15T21:03:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。