論文の概要: CCDSReFormer: Traffic Flow Prediction with a Criss-Crossed Dual-Stream Enhanced Rectified Transformer Model
- arxiv url: http://arxiv.org/abs/2403.17753v1
- Date: Tue, 26 Mar 2024 14:43:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 14:58:20.362219
- Title: CCDSReFormer: Traffic Flow Prediction with a Criss-Crossed Dual-Stream Enhanced Rectified Transformer Model
- Title(参考訳): CCDSReformer:Criss-Crossed Dual-Stream Enhanced Rectified Transformer Modelによる交通流予測
- Authors: Zhiqi Shao, Michael G. H. Bell, Ze Wang, D. Glenn Geers, Xusheng Yao, Junbin Gao,
- Abstract要約: 我々はCriss-Crossed Dual-Stream Enhanced Rectified Transformer Model (CCDSReFormer)を紹介する。
ReSSA(Enhanced Rectified Spatial Self-attention)、ReDASA(Enhanced Rectified Delay Aware Self-attention)、ReTSA(Enhanced Rectified Temporal Self-attention)の3つの革新的なモジュールが含まれている。
これらのモジュールは、疎注意による計算ニーズの低減、トラフィックダイナミクスの理解向上のためのローカル情報への注力、ユニークな学習手法による空間的および時間的洞察の融合を目的としている。
- 参考スコア(独自算出の注目度): 32.45713037210818
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate, and effective traffic forecasting is vital for smart traffic systems, crucial in urban traffic planning and management. Current Spatio-Temporal Transformer models, despite their prediction capabilities, struggle with balancing computational efficiency and accuracy, favoring global over local information, and handling spatial and temporal data separately, limiting insight into complex interactions. We introduce the Criss-Crossed Dual-Stream Enhanced Rectified Transformer model (CCDSReFormer), which includes three innovative modules: Enhanced Rectified Spatial Self-attention (ReSSA), Enhanced Rectified Delay Aware Self-attention (ReDASA), and Enhanced Rectified Temporal Self-attention (ReTSA). These modules aim to lower computational needs via sparse attention, focus on local information for better traffic dynamics understanding, and merge spatial and temporal insights through a unique learning method. Extensive tests on six real-world datasets highlight CCDSReFormer's superior performance. An ablation study also confirms the significant impact of each component on the model's predictive accuracy, showcasing our model's ability to forecast traffic flow effectively.
- Abstract(参考訳): 正確な交通予測はスマート交通システムにとって不可欠であり、都市交通計画と管理に不可欠である。
現在の時空間変圧器モデルは、予測能力にもかかわらず、計算効率と精度のバランスに苦慮し、局所的情報よりもグローバルに好意し、空間的データと時間的データを別々に扱い、複雑な相互作用についての洞察を制限している。
本稿では,Criss-Crossed Dual-Stream Enhanced Rectified Transformer Model (CCDSReFormer)を紹介し,ReSSA(Enhanced Rectified Spatial Self-attention),ReDASA(Enhanced Rectified Delay Aware Self-attention),ReTSA(Enhanced Rectified Temporal Self-attention)の3つの革新的なモジュールについて述べる。
これらのモジュールは、疎注意による計算ニーズの低減、トラフィックダイナミクスの理解向上のためのローカル情報への注力、ユニークな学習手法による空間的および時間的洞察の融合を目的としている。
6つの実世界のデータセットに対する大規模なテストは、CCDSReFormerの優れたパフォーマンスを強調している。
アブレーション調査では、各コンポーネントがモデルの予測精度に与える影響も確認し、モデルがトラフィックフローを効果的に予測する能力を示している。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Fusion Matrix Prompt Enhanced Self-Attention Spatial-Temporal Interactive Traffic Forecasting Framework [2.9490249935740573]
FMPESTF(Fusion Matrix Prompt-Enhanced Self-Attention Space-Temporal Interactive Traffic Forecasting Framework)を提案する。
FMPESTFは、ダウンサンプリングトラフィックデータのための空間的および時間的モジュールで構成されている。
時間モデリングにおける注意機構を導入し,様々な交通シナリオに適応するための階層型時空間対話型学習を設計する。
論文 参考訳(メタデータ) (2024-10-12T03:47:27Z) - Unleashing the Potential of Mamba: Boosting a LiDAR 3D Sparse Detector by Using Cross-Model Knowledge Distillation [22.653014803666668]
FASDと呼ばれる高速LiDAR3Dオブジェクト検出フレームワークを提案する。
高速シーケンスモデリングのための変換器のキャパシティをFLOPの低いMambaモデルに蒸留し,知識伝達による精度の向上を実現することを目的とする。
我々は,データセットとnuScenesのフレームワークを評価し,リソース消費の4倍の削減と,現在のSoTA手法よりも1-2%の性能向上を実現した。
論文 参考訳(メタデータ) (2024-09-17T09:30:43Z) - Navigating Spatio-Temporal Heterogeneity: A Graph Transformer Approach for Traffic Forecasting [13.309018047313801]
交通予測はスマートシティの発展において重要な研究分野として浮上している。
最短時間相関のためのネットワークモデリングの最近の進歩は、パフォーマンスのリターンが低下し始めている。
これらの課題に対処するために、時空間グラフ変換器(STGormer)を導入する。
本研究では,その構造に基づく空間符号化手法を2つ設計し,時間位置をバニラ変圧器に統合して時間的トラフィックパターンをキャプチャする。
論文 参考訳(メタデータ) (2024-08-20T13:18:21Z) - ST-Mamba: Spatial-Temporal Selective State Space Model for Traffic Flow Prediction [32.44888387725925]
提案したST-Mambaモデルは,まず,グラフモデルを用いることなく交通流予測における時空間学習のパワーを活用する。
提案したST-Mambaモデルでは、計算速度が61.11%向上し、予測精度が0.67%向上した。
実世界のトラフィックデータセットを用いた実験は、textsfST-Mambaモデルがトラフィックフロー予測の新しいベンチマークを設定することを示した。
論文 参考訳(メタデータ) (2024-04-20T03:57:57Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - Attention-based Spatial-Temporal Graph Convolutional Recurrent Networks
for Traffic Forecasting [12.568905377581647]
交通予測は交通科学と人工知能における最も基本的な問題の一つである。
既存の手法では、長期的相関と短期的相関を同時にモデル化することはできない。
本稿では,GCRN(Graph Convolutional Recurrent Module)とグローバルアテンションモジュールからなる新しい時空間ニューラルネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-25T03:37:00Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - StreamYOLO: Real-time Object Detection for Streaming Perception [84.2559631820007]
将来を予測する能力を備えたモデルを提供し、ストリーミング知覚の結果を大幅に改善する。
本稿では,複数の速度を駆動するシーンについて考察し,VasAP(Velocity-Awared streaming AP)を提案する。
本手法は,Argoverse-HDデータセットの最先端性能を実現し,SAPとVsAPをそれぞれ4.7%,VsAPを8.2%改善する。
論文 参考訳(メタデータ) (2022-07-21T12:03:02Z) - Scalable Vehicle Re-Identification via Self-Supervision [66.2562538902156]
自動車再同定は、都市規模の車両分析システムにおいて重要な要素の1つである。
車両再設計のための最先端のソリューションの多くは、既存のre-idベンチマークの精度向上に重点を置いており、計算の複雑さを無視することが多い。
推論時間に1つのネットワークのみを使用する自己教師型学習によって、シンプルで効果的なハイブリッドソリューションを提案する。
論文 参考訳(メタデータ) (2022-05-16T12:14:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。