論文の概要: Towards Multilevel Modelling of Train Passing Events on the Staffordshire Bridge
- arxiv url: http://arxiv.org/abs/2403.17820v1
- Date: Tue, 26 Mar 2024 15:55:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 14:47:26.823600
- Title: Towards Multilevel Modelling of Train Passing Events on the Staffordshire Bridge
- Title(参考訳): スタッフォードシャー橋における列車通過イベントのマルチレベルモデリングに向けて
- Authors: Lawrence A. Bull, Chiho Jeon, Mark Girolami, Andrew Duncan, Jennifer Schooling, Miguel Bravo Haro,
- Abstract要約: 本稿では,スタッフォードシャー橋のモニタリングシステムから,列車通過イベントを総合的に表現する多段階モデルを提案する。
本稿では,2種類の通勤列車について,単純な単位から(各列車通過時の)ひずみエンベロープを表す組み合わせモデルを定式化した。
- 参考スコア(独自算出の注目度): 3.6732244198539434
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We suggest a multilevel model, to represent aggregate train-passing events from the Staffordshire bridge monitoring system. We formulate a combined model from simple units, representing strain envelopes (of each train passing) for two types of commuter train. The measurements are treated as a longitudinal dataset and represented with a (low-rank approximation) hierarchical Gaussian process. For each unit in the combined model, we encode domain expertise as boundary condition constraints and work towards a general representation of the strain response. Looking forward, this should allow for the simulation of train types that were previously unobserved in the training data. For example, trains with more passengers or freights with a heavier payload. The strain event simulations are valuable since they can inform further experiments (including FEM calibration, fatigue analysis, or design) to test the bridge in hypothesised scenarios.
- Abstract(参考訳): 我々は,スタッフォードシャー橋のモニタリングシステムから列車通過イベントを総合的に表現する多層モデルを提案する。
本稿では,2種類の通勤列車について,単純な単位から(各列車通過時の)ひずみエンベロープを表す組み合わせモデルを定式化した。
これらの測定は、縦断的データセットとして扱われ、(低階近似)階層的なガウス過程で表される。
結合モデルの各ユニットについて、境界条件制約としてドメインの専門知識を符号化し、ひずみ応答の一般的な表現に向けて作業する。
今後は、これまでトレーニングデータに保存されていなかった列車のシミュレーションが可能になるだろう。
例えば、より多くの乗客や貨物を積んだ列車が重荷を積んでいる。
ストレインイベントシミュレーションは、仮説化されたシナリオでブリッジをテストするためのさらなる実験(FEM校正、疲労解析、設計など)を通知できるので、価値がある。
関連論文リスト
- Pre-Trained Model Recommendation for Downstream Fine-tuning [22.343011779348682]
モデル選択は、市販の事前訓練されたモデルをランク付けし、新しいターゲットタスクに最も適したモデルを選択することを目的としている。
既存のモデル選択テクニックはスコープ内で制約されることが多く、モデルとタスク間の微妙な関係を見落としてしまう傾向があります。
我々は,多種多様な大規模モデルリポジトリを探索する実用的フレームワーク textbfFennec を提案する。
論文 参考訳(メタデータ) (2024-03-11T02:24:32Z) - Intersection of Parallels as an Early Stopping Criterion [64.8387564654474]
そこで本研究では,検証セットを必要とせずに,トレーニングイテレーションの早期停止点を見つける手法を提案する。
幅広い学習率において,コサイン距離基準 (CDC) と呼ばれる手法は,比較したすべての手法よりも平均的な一般化に寄与する。
論文 参考訳(メタデータ) (2022-08-19T19:42:41Z) - Parallel Bayesian Optimization of Agent-based Transportation Simulation [0.4129225533930965]
MATSimは、道路交通、公共交通、貨物輸送、地域避難など様々な分野に適用される、オープンソースの大規模エージェントベースの交通計画プロジェクトである。
BEAMシミュレーションのエージェントは、マルチノードロジットモデルに基づく「モード選択」の振る舞いを示す。
そこで本研究では,自転車,車,歩行,車いす,車いす,車いす,車いす,車いす,車いす,車いす,車いす,車いす,車いすの8つのモードの選択について検討した。
与えられたマルチイン・マルチアウト問題に対する高速収束を実現するために,早期停止規則付き並列ベイズ最適化法を提案する。
論文 参考訳(メタデータ) (2022-07-11T17:49:29Z) - Speeding up Deep Model Training by Sharing Weights and Then Unsharing [23.35912133295125]
本稿では,BERTモデルの簡易かつ効率的な学習手法を提案する。
提案手法では,繰り返しモジュールのスタックを含むBERTの特別な構造を利用する。
論文 参考訳(メタデータ) (2021-10-08T01:23:34Z) - LogME: Practical Assessment of Pre-trained Models for Transfer Learning [80.24059713295165]
最大エビデンス対数(logme)は、転送学習のための事前学習されたモデルを評価するために用いられる。
ブルートフォースの微調整と比較して、LogMEはウォールクロックタイムで3000times$のスピードアップをもたらします。
論文 参考訳(メタデータ) (2021-02-22T13:58:11Z) - The Lottery Tickets Hypothesis for Supervised and Self-supervised
Pre-training in Computer Vision Models [115.49214555402567]
事前訓練された重量は、しばしば分類、検出、セグメンテーションを含む幅広い下流タスクを増加させる。
最近の研究は、巨大モデル能力による事前学習の利点を示唆している。
本稿では,抽選券仮説(LTH)のレンズを用いて,教師付きおよび自己指導型事前学習モデルについて検討する。
論文 参考訳(メタデータ) (2020-12-12T21:53:55Z) - Deep Ensembles for Low-Data Transfer Learning [21.578470914935938]
我々は、事前訓練されたモデルからアンサンブルを作成する様々な方法を研究する。
プレトレーニング自体が多様性の優れた源であることが示される。
本稿では,任意の下流データセットに対して,事前学習したモデルのサブセットを効率的に同定する実用的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-14T07:59:00Z) - How Important is the Train-Validation Split in Meta-Learning? [155.5088631672781]
メタラーニングにおける一般的な実践は、前者がデータの1つの分割に対してタスクに適応し、その結果の予測器が別の分割に対して評価される列車バリデーション分割(emphtrain-val method)を実行することである。
有病率にもかかわらず、列車の改札の重要性は理論上も実際上もよく理解されていない。
そこで本研究では,実際のメタ学習タスクとシミュレーションの両方において,トレイン・トレイン法がトレイン・ヴァル法より優れていることを示す。
論文 参考訳(メタデータ) (2020-10-12T16:48:42Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
本稿では,将来の軌道予測における2つの重要な課題に対処する手法を提案する。
エージェントの数に関係なく、トレーニングデータと予測と一定時間の推測の両方において、マルチモーダリティ。
論文 参考訳(メタデータ) (2020-07-26T08:17:10Z) - The Lottery Ticket Hypothesis for Pre-trained BERT Networks [137.99328302234338]
自然言語処理(NLP)では、BERTのような巨大な事前学習モデルがトレーニングの標準出発点となっている。
並行して、抽選券仮説の研究により、NLPとコンピュータビジョンのモデルには、完全精度で個別にトレーニングできる小さなマッチングワークが含まれていることが示されている。
これらの観測と組み合わせて、トレーニング済みのBERTモデルにそのようなトレーニング可能なトランスファーブルワークが存在するかどうかを評価する。
論文 参考訳(メタデータ) (2020-07-23T19:35:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。