論文の概要: Serpent: Scalable and Efficient Image Restoration via Multi-scale Structured State Space Models
- arxiv url: http://arxiv.org/abs/2403.17902v3
- Date: Wed, 22 Jan 2025 01:08:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:52:17.271497
- Title: Serpent: Scalable and Efficient Image Restoration via Multi-scale Structured State Space Models
- Title(参考訳): Serpent: マルチスケール構造化状態空間モデルによるスケーラブルで効率的な画像復元
- Authors: Mohammad Shahab Sepehri, Zalan Fabian, Mahdi Soltanolkotabi,
- Abstract要約: サーペントは高解像度画像復元のための効率的なアーキテクチャである。
本稿では,Serpentが最先端技術に匹敵する再現性が得られることを示す。
- 参考スコア(独自算出の注目度): 22.702352459581434
- License:
- Abstract: The landscape of computational building blocks of efficient image restoration architectures is dominated by a combination of convolutional processing and various attention mechanisms. However, convolutional filters, while efficient, are inherently local and therefore struggle with modeling long-range dependencies in images. In contrast, attention excels at capturing global interactions between arbitrary image regions, but suffers from a quadratic cost in image dimension. In this work, we propose Serpent, an efficient architecture for high-resolution image restoration that combines recent advances in state space models (SSMs) with multi-scale signal processing in its core computational block. SSMs, originally introduced for sequence modeling, can maintain a global receptive field with a favorable linear scaling in input size. We propose a novel hierarchical architecture inspired by traditional signal processing principles, that converts the input image into a collection of sequences and processes them in a multi-scale fashion. Our experimental results demonstrate that Serpent can achieve reconstruction quality on par with state-of-the-art techniques, while requiring orders of magnitude less compute (up to $150$ fold reduction in FLOPS) and a factor of up to $5\times$ less GPU memory while maintaining a compact model size. The efficiency gains achieved by Serpent are especially notable at high image resolutions.
- Abstract(参考訳): 効率的な画像復元アーキテクチャの計算構築ブロックのランドスケープは、畳み込み処理と様々な注意機構の組み合わせによって支配されている。
しかし、畳み込みフィルタは効率的ではあるが本質的に局所的であるため、画像内の長距離依存関係のモデリングに苦慮している。
対照的に、注意は任意の画像領域間のグローバルな相互作用を捉えるのに優れるが、画像次元の二次的なコストに悩まされる。
本研究では,最近の状態空間モデル(SSM)とマルチスケール信号処理を組み合わせた高解像度画像復元のための効率的なアーキテクチャであるSerpentを提案する。
もともとシーケンスモデリングのために導入されたSSMは、入力サイズが好適な線形スケーリングで、グローバルな受容場を維持することができる。
本稿では,従来の信号処理原理に着想を得た新しい階層型アーキテクチャを提案し,入力画像をシーケンスの集合に変換し,マルチスケールで処理する。
実験結果から,Serpentはコンピュート・オブ・ザ・アーティファクト(FLOPSの最大150ドル分の削減)と最大5ドル分のGPUメモリを必要とすると同時に,コンピュート・オブ・ザ・アーティファクトに匹敵する再現性を実現することができることを示した。
Serpentによって達成された効率向上は、特に高解像度で顕著である。
関連論文リスト
- Parameter-Inverted Image Pyramid Networks [49.35689698870247]
Inverted Image Pyramid Networks (PIIP) と呼ばれる新しいネットワークアーキテクチャを提案する。
私たちの中核となる考え方は、パラメータサイズの異なるモデルを使用して、画像ピラミッドの解像度の異なるレベルを処理することです。
PIIPは、オブジェクト検出、セグメンテーション、画像分類などのタスクにおいて優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-06-06T17:59:10Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)は、画像復元において優れた性能を発揮している。
本稿では,画像のデブロアに対する簡易かつ効果的な視覚状態空間モデル(EVSSM)を提案する。
論文 参考訳(メタデータ) (2024-05-23T09:13:36Z) - Look-Around Before You Leap: High-Frequency Injected Transformer for Image Restoration [46.96362010335177]
本稿では,画像復元のための簡易かつ効果的な高周波インジェクト変換器HITを提案する。
具体的には,機能マップに高頻度の詳細を組み込んだウィンドウワイドインジェクションモジュール(WIM)を設計し,高品質な画像の復元のための信頼性の高い参照を提供する。
さらに,BIMにおけるチャネル次元の計算によって失われる可能性のある空間的関係を維持するために,空間拡張ユニット(SEU)を導入する。
論文 参考訳(メタデータ) (2024-03-30T08:05:00Z) - Multi-scale Unified Network for Image Classification [33.560003528712414]
CNNは、実世界のマルチスケール画像入力を扱う際に、性能と計算効率において顕著な課題に直面している。
本稿では,マルチスケール,統一ネットワーク,スケール不変制約からなるMultiscale Unified Network(MUSN)を提案する。
MUSNは精度が44.53%向上し、マルチスケールシナリオではFLOPを7.01-16.13%減少させる。
論文 参考訳(メタデータ) (2024-03-27T06:40:26Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN)は、ダウンスケーリングとアップスケーリングのサイクルを共同で最適化することにより、アップスケーリングの精度を大幅に向上させることができる。
本研究の1つのモデルのみをトレーニングすることにより、任意の画像再スケーリングを実現するために、単純で効果的な非可逆的再スケーリングネットワーク(IARN)を提案する。
LR出力の知覚品質を損なうことなく、双方向任意再スケーリングにおいて最先端(SOTA)性能を実現する。
論文 参考訳(メタデータ) (2022-09-26T22:22:30Z) - Fast and High-Quality Image Denoising via Malleable Convolutions [72.18723834537494]
動的畳み込みの効率的な変種として、Malleable Convolution (MalleConv)を提案する。
以前の作品とは異なり、MalleConvは入力から空間的に変化するカーネルのより小さなセットを生成する。
また、MalleNetという造語であるMalleConvを用いて、効率的なdenoisingネットワークを構築した。
論文 参考訳(メタデータ) (2022-01-02T18:35:20Z) - Restormer: Efficient Transformer for High-Resolution Image Restoration [118.9617735769827]
畳み込みニューラルネットワーク(CNN)は、大規模データから一般化可能な画像の事前学習をうまく行う。
トランスフォーマーは、自然言語とハイレベルな視覚タスクにおいて、顕著なパフォーマンス向上を示している。
我々のモデルであるRecovery Transformer (Restormer) は、いくつかの画像復元タスクにおいて最先端の結果を得る。
論文 参考訳(メタデータ) (2021-11-18T18:59:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。