論文の概要: FastCAR: Fast Classification And Regression Multi-Task Learning via Task Consolidation for Modelling a Continuous Property Variable of Object Classes
- arxiv url: http://arxiv.org/abs/2403.17926v1
- Date: Tue, 26 Mar 2024 17:57:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 14:08:24.521859
- Title: FastCAR: Fast Classification And Regression Multi-Task Learning via Task Consolidation for Modelling a Continuous Property Variable of Object Classes
- Title(参考訳): FastCAR: オブジェクトクラスの連続特性をモデル化するためのタスク統合による高速な分類と回帰マルチタスク学習
- Authors: Anoop Kini, Andreas Jansche, Timo Bernthaler, Gerhard Schneider,
- Abstract要約: FastCARは、分類と回帰タスクのためのマルチタスク学習(MTL)における新しいタスク統合アプローチである。
オブジェクト分類と連続特性変数回帰(continuous property variable regression)に対処する。
FastCARは従来のMTLモデルファミリよりも優れており、アーキテクチャや損失重み付けの分野でパラメタ化されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: FastCAR is a novel task consolidation approach in Multi-Task Learning (MTL) for a classification and a regression task, despite task heterogeneity with only subtle correlation. It addresses object classification and continuous property variable regression, a crucial use case in science and engineering. FastCAR involves a labeling transformation approach that can be used with a single-task regression network architecture. FastCAR outperforms traditional MTL model families, parametrized in the landscape of architecture and loss weighting schemes, when learning of both tasks are collectively considered (classification accuracy of 99.54%, regression mean absolute percentage error of 2.3%). The experiments performed used an Advanced Steel Property dataset contributed by us. The dataset comprises 4536 images of 224x224 pixels, annotated with object classes and hardness properties that take continuous values. With the labeling transformation and single-task regression network architecture, FastCAR achieves reduced latency and time efficiency.
- Abstract(参考訳): FastCARは、微妙な相関しか持たないタスクの不均一性にもかかわらず、分類と回帰タスクのためのMTL(Multi-Task Learning)における新しいタスク統合アプローチである。
オブジェクト分類と連続特性変数回帰(continuous property variable regression)に対処する。
FastCARには、シングルタスク回帰ネットワークアーキテクチャで使用できるラベル変換アプローチが含まれている。
FastCAR は従来の MTL モデルファミリよりも優れており、アーキテクチャや損失重み付けの手法でパラメタ化され、両方のタスクの学習が一括して検討される(分類精度99.54%、回帰平均絶対パーセンテージ誤差2.3%)。
実験では、私たちに貢献したAdvanced Steel Propertyデータセットを使用しました。
データセットは224x224ピクセルの4536枚の画像で構成され、オブジェクトクラスと連続的な値を取る硬さ特性が注釈付けされている。
ラベル変換とシングルタスク回帰ネットワークアーキテクチャにより、FastCARはレイテンシと時間効率の低減を実現している。
関連論文リスト
- Dynamic Integration of Task-Specific Adapters for Class Incremental Learning [31.67570086108542]
非典型的なクラス インクリメンタルラーニング (NECIL) では、モデルがスクラッチからリトレーニングしたり、古いタスク インクリメンタルを格納したりすることなく、新しいクラスを継続的に取得できる。
本稿では,タスク特化アダプタ統合(TSAI)とパッチレベルモデルアライメントという,タスク特化アダプタの動的統合(DIA)という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-23T13:01:33Z) - Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
マルチタスク学習(MTL)は、タスク間の共有知識を活用し、一般化とパフォーマンスを改善するために設計された強力な機械学習パラダイムである。
本稿では,タスククラスタリングと特徴変換の交点におけるMTL手法を提案する。
両段階において、鍵となる側面は減った目標と特徴の解釈可能性を維持することである。
論文 参考訳(メタデータ) (2024-06-12T08:30:16Z) - InterroGate: Learning to Share, Specialize, and Prune Representations
for Multi-task Learning [17.66308231838553]
推論計算効率を最適化しつつ,タスク干渉を緩和する新しいマルチタスク学習(MTL)アーキテクチャを提案する。
学習可能なゲーティング機構を用いて、すべてのタスクのパフォーマンスを保ちながら、共有表現とタスク固有の表現を自動的にバランスさせる。
論文 参考訳(メタデータ) (2024-02-26T18:59:52Z) - Few-Shot Class-Incremental Learning by Sampling Multi-Phase Tasks [59.12108527904171]
モデルは新しいクラスを認識し、古いクラスに対する差別性を維持すべきである。
古いクラスを忘れずに新しいクラスを認識するタスクは、FSCIL ( few-shot class-incremental Learning) と呼ばれる。
我々は,LearnIng Multi-phase Incremental Tasks (LIMIT) によるメタラーニングに基づくFSCILの新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2022-03-31T13:46:41Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing(TAPS)は、階層の小さなタスク固有のサブセットを適応的に修正することで、ベースモデルを新しいタスクにチューニングする手法である。
他の手法と比較して、TAPSはダウンストリームタスクに対して高い精度を維持し、タスク固有のパラメータは少ない。
我々は,タスクやアーキテクチャ(ResNet,DenseNet,ViT)を微調整して評価し,実装が簡単でありながら最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2022-03-30T23:16:07Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
未知タスクの視覚言語モデルのためのモデル非依存型マルチタスクファインチューニング(MAMF)を提案する。
モデルに依存しないメタラーニング(MAML)と比較して、MAMFは二段階最適化を捨て、一階勾配のみを使用する。
MAMFは5つのベンチマークデータセット上で、数ショットの転送学習において古典的な微調整法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-03-09T17:26:53Z) - Meta-Regularization by Enforcing Mutual-Exclusiveness [0.8057006406834467]
本稿では,メタ学習時の情報フローをモデル設計者が制御できるように,メタ学習モデルの正規化手法を提案する。
提案した正規化関数は,Omniglotデータセット上で$sim$$36%の精度向上を示す。
論文 参考訳(メタデータ) (2021-01-24T22:57:19Z) - Conditionally Adaptive Multi-Task Learning: Improving Transfer Learning
in NLP Using Fewer Parameters & Less Data [5.689320790746046]
マルチタスク学習(MTL)ネットワークは、異なるタスク間で学習知識を伝達するための有望な方法として登場した。
しかし、MTLは、低リソースタスクへの過度な適合、破滅的な忘れ込み、負のタスク転送といった課題に対処しなければならない。
本稿では,新しい条件付アテンション機構とタスク条件付きモジュール群からなるトランスフォーマーアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-09-19T02:04:34Z) - Adversarial Continual Learning [99.56738010842301]
本稿では,タスク不変およびタスク特化機能に対する不整合表現を学習するハイブリッド連続学習フレームワークを提案する。
本モデルでは,タスク固有のスキルの忘れを防止するためにアーキテクチャの成長と,共有スキルを維持するための経験的リプレイアプローチを組み合わせる。
論文 参考訳(メタデータ) (2020-03-21T02:08:17Z) - Pairwise Similarity Knowledge Transfer for Weakly Supervised Object
Localization [53.99850033746663]
弱教師付き画像ラベルを持つ対象クラスにおける局所化モデル学習の問題点について検討する。
本研究では,対象関数のみの学習は知識伝達の弱い形態であると主張する。
COCOおよびILSVRC 2013検出データセットの実験では、ペアワイズ類似度関数を含むことにより、ローカライズモデルの性能が大幅に向上することが示された。
論文 参考訳(メタデータ) (2020-03-18T17:53:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。