論文の概要: Holographic Global Convolutional Networks for Long-Range Prediction Tasks in Malware Detection
- arxiv url: http://arxiv.org/abs/2403.17978v1
- Date: Sat, 23 Mar 2024 15:49:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 21:34:33.679685
- Title: Holographic Global Convolutional Networks for Long-Range Prediction Tasks in Malware Detection
- Title(参考訳): マルウェア検出における長距離予測タスクのためのホログラフィックグローバル畳み込みネットワーク
- Authors: Mohammad Mahmudul Alam, Edward Raff, Stella Biderman, Tim Oates, James Holt,
- Abstract要約: ホログラフィック還元表現(HRR)の特性を利用したホログラフィックグローバル畳み込みネットワーク(HGConv)を導入する。
他のグローバルな畳み込み法とは異なり、我々の手法は複雑なカーネル計算や人工カーネル設計を必要としない。
提案手法は,Microsoft Malware Classification Challenge, Drebin, EMBERのマルウェアベンチマークで新たなSOTA結果を得た。
- 参考スコア(独自算出の注目度): 50.7263393517558
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Malware detection is an interesting and valuable domain to work in because it has significant real-world impact and unique machine-learning challenges. We investigate existing long-range techniques and benchmarks and find that they're not very suitable in this problem area. In this paper, we introduce Holographic Global Convolutional Networks (HGConv) that utilize the properties of Holographic Reduced Representations (HRR) to encode and decode features from sequence elements. Unlike other global convolutional methods, our method does not require any intricate kernel computation or crafted kernel design. HGConv kernels are defined as simple parameters learned through backpropagation. The proposed method has achieved new SOTA results on Microsoft Malware Classification Challenge, Drebin, and EMBER malware benchmarks. With log-linear complexity in sequence length, the empirical results demonstrate substantially faster run-time by HGConv compared to other methods achieving far more efficient scaling even with sequence length $\geq 100,000$.
- Abstract(参考訳): マルウェア検出は、実世界の大きな影響とユニークな機械学習の課題があるため、興味深く価値のある分野である。
既存の長距離技術とベンチマークを調査し、この問題領域にはあまり適していないことを発見した。
本稿では,ホログラフィック・グローバル・コンボリューション・ネットワーク(HGConv)を提案する。
他のグローバルな畳み込み法とは異なり、我々の手法は複雑なカーネル計算や人工カーネル設計を必要としない。
HGConvカーネルはバックプロパゲーションによって学習された単純なパラメータとして定義される。
提案手法は,Microsoft Malware Classification Challenge, Drebin, EMBERのマルウェアベンチマークで新たなSOTA結果を得た。
シーケンス長の対数線形複雑性により,HGConvによる実行時間は,シーケンス長が$\geq 10000$の場合でも,はるかに効率的なスケーリングを実現する他の方法と比較して,はるかに高速であることが実証された。
関連論文リスト
- Ada-HGNN: Adaptive Sampling for Scalable Hypergraph Neural Networks [19.003370580994936]
本稿では,ハイパーグラフに特化して設計された新しい適応サンプリング手法を提案する。
また、RHA(Random Hyperedge Augmentation)技術とMLP(Multilayer Perceptron)モジュールを追加して、アプローチの堅牢性と能力を向上させる。
論文 参考訳(メタデータ) (2024-05-22T06:15:50Z) - Quantum Algorithm Exploration using Application-Oriented Performance
Benchmarks [0.0]
Application-Oriented BenchmarksのQED-Cスイートは、量子コンピュータの性能特性を測定する機能を提供する。
我々は,このベンチマーク手法がより複雑なアプリケーションに適用される可能性を広げる上での課題について検討する。
論文 参考訳(メタデータ) (2024-02-14T06:55:50Z) - Multi-Level GNN Preconditioner for Solving Large Scale Problems [0.0]
グラフニューラルネットワーク(GNN)はメッシュのような非構造化データから学ぶのに最適だが、小さな問題に制限されることが多い。
本稿では,GNNモデルを多レベルドメイン分解フレームワークに統合した新しいプレコンディショナーを提案する。
提案したGNNベースのプレコンディショナーは、Krylov法の効率を高めるために使用され、任意の精度の要求レベルに収束できるハイブリッド・ソルバとなる。
論文 参考訳(メタデータ) (2024-02-13T08:50:14Z) - Efficient Heterogeneous Graph Learning via Random Projection [65.65132884606072]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - Global Context Aggregation Network for Lightweight Saliency Detection of
Surface Defects [70.48554424894728]
我々は,エンコーダ・デコーダ構造上の表面欠陥を簡易に検出するためのGCANet(Global Context Aggregation Network)を開発した。
まず、軽量バックボーンの上部層に新しいトランスフォーマーエンコーダを導入し、DSA(Depth-wise Self-Attention)モジュールを通じてグローバルなコンテキスト情報をキャプチャする。
3つの公開欠陥データセットの実験結果から,提案したネットワークは,他の17の最先端手法と比較して,精度と実行効率のトレードオフを良好に達成できることが示された。
論文 参考訳(メタデータ) (2023-09-22T06:19:11Z) - Towards Better Out-of-Distribution Generalization of Neural Algorithmic
Reasoning Tasks [51.8723187709964]
ニューラルネットワーク推論タスクのOOD一般化について検討する。
目標は、ディープニューラルネットワークを使用して入出力ペアからアルゴリズムを学ぶことである。
論文 参考訳(メタデータ) (2022-11-01T18:33:20Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
グラフニューラルネットワーク(GNN)の大規模グラフトレーニングは、非常に難しい問題である
本稿では,既存の問題に対処するため,EnGCNという新たなアンサンブルトレーニング手法を提案する。
提案手法は,大規模データセット上でのSOTA(State-of-the-art)の性能向上を実現している。
論文 参考訳(メタデータ) (2022-10-14T03:43:05Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Lightweight Jet Reconstruction and Identification as an Object Detection
Task [5.071565475111431]
我々は、CERN大型ハドロン衝突型加速器で遭遇したジェットのエンド・ツー・エンドの識別と再構築作業に畳み込み技術を適用した。
PFJet-SSDは、クラスタジェットへの同時ローカライゼーション、分類、回帰タスクを実行し、特徴を再構築する。
3次ネットワークは、その完全精度の等価な性能と密に一致し、最先端のルールベースアルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2022-02-09T15:01:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。