論文の概要: DeltaGNN: Graph Neural Network with Information Flow Control
- arxiv url: http://arxiv.org/abs/2501.06002v1
- Date: Fri, 10 Jan 2025 14:34:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:26:51.323176
- Title: DeltaGNN: Graph Neural Network with Information Flow Control
- Title(参考訳): DeltaGNN:情報フロー制御によるグラフニューラルネットワーク
- Authors: Kevin Mancini, Islem Rekik,
- Abstract要約: グラフニューラルネットワーク(GNN)は、メッセージパッシングプロセスの近傍集約を通じてグラフ構造化データを処理するように設計されている。
メッセージパッシングにより、GNNは短距離空間的相互作用を理解できるだけでなく、過度なスムーシングや過度なスカッシングに悩まされる。
本稿では,線形計算オーバーヘッドを伴うオーバー・スムーシングとオーバー・スキャッシングに対処するための,emph情報フロー制御機構を提案する。
さまざまなサイズ、トポロジ、密度、ホモフィリック比のグラフを含む10の実世界のデータセットを対象に、我々のモデルをベンチマークし、優れたパフォーマンスを示す。
- 参考スコア(独自算出の注目度): 5.563171090433323
- License:
- Abstract: Graph Neural Networks (GNNs) are popular deep learning models designed to process graph-structured data through recursive neighborhood aggregations in the message passing process. When applied to semi-supervised node classification, the message-passing enables GNNs to understand short-range spatial interactions, but also causes them to suffer from over-smoothing and over-squashing. These challenges hinder model expressiveness and prevent the use of deeper models to capture long-range node interactions (LRIs) within the graph. Popular solutions for LRIs detection are either too expensive to process large graphs due to high time complexity or fail to generalize across diverse graph structures. To address these limitations, we propose a mechanism called \emph{information flow control}, which leverages a novel connectivity measure, called \emph{information flow score}, to address over-smoothing and over-squashing with linear computational overhead, supported by theoretical evidence. Finally, to prove the efficacy of our methodology we design DeltaGNN, the first scalable and generalizable approach for detecting long-range and short-range interactions. We benchmark our model across 10 real-world datasets, including graphs with varying sizes, topologies, densities, and homophilic ratios, showing superior performance with limited computational complexity. The implementation of the proposed methods are publicly available at https://github.com/basiralab/DeltaGNN.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、メッセージパッシングプロセスにおける再帰的な近傍集約を通じてグラフ構造化データを処理するために設計された、人気のあるディープラーニングモデルである。
半教師付きノード分類に適用すると、メッセージパッシングにより、GNNは短距離空間的相互作用を理解できるだけでなく、過度なスムーシングや過度なスカッシングに悩まされる。
これらの課題は、モデル表現性を阻害し、グラフ内の長距離ノード相互作用(LRI)をキャプチャするためのより深いモデルの使用を防止する。
LRI検出の一般的なソリューションは、リアルタイムの複雑さのために大きなグラフを処理するのに高すぎるか、多種多様なグラフ構造をまたいだ一般化に失敗したかのいずれかである。
これらの制約に対処するために,理論的な証拠によって支持された線形計算オーバーヘッドによる過度な平滑化と過度なスキャッシングに対処するために,'emph{information flow control} と呼ばれる新しい接続手段である 'emph{information flow score} を利用する機構を提案する。
最後に,提案手法の有効性を証明するために,長距離および短距離の相互作用を検出するための,最初のスケーラブルで一般化可能なアプローチであるDeltaGNNを設計する。
実世界の10のデータセットにまたがってモデルをベンチマークし、様々なサイズ、トポロジ、密度、ホモフィリック比のグラフを含む、計算複雑性に制限のある優れたパフォーマンスを示す。
提案手法の実装はhttps://github.com/basiralab/DeltaGNNで公開されている。
関連論文リスト
- Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) はノード分類タスク用に設計された非神経モデルである。
GNNにアクセスできる情報のごく一部しか使わない従来のグラフアルゴリズムとは異なり、提案モデルではノードの特徴とエンティティ間の関係を同時に活用する。
論文 参考訳(メタデータ) (2024-11-19T08:32:14Z) - DuoGNN: Topology-aware Graph Neural Network with Homophily and Heterophily Interaction-Decoupling [0.0]
グラフニューラルネットワーク(GNN)は、自動疾患診断など、様々な医療画像の応用に有効であることが証明されている。
それらは本質的に2つの基本的な制限に悩まされる: まず、不明瞭なノードの埋め込みは、ヘテロ親和性ノードの集約に起因する。
我々は、トポロジを利用してホモ親和性およびヘテロ親和性のあるエッジを分離するスケーラブルで一般化可能なアーキテクチャであるDuoGNNを提案する。
論文 参考訳(メタデータ) (2024-09-29T09:01:22Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - Re-Think and Re-Design Graph Neural Networks in Spaces of Continuous
Graph Diffusion Functionals [7.6435511285856865]
グラフニューラルネットワーク(GNN)は、ソーシャルネットワークや生体システムのようなドメインで広く使われている。
GNNのローカリティ仮定は、グラフ内の長距離依存関係とグローバルパターンをキャプチャする能力を損なう。
本稿では,ブラヒクロニスト問題から着想を得た変分解析に基づく新しい帰納バイアスを提案する。
論文 参考訳(メタデータ) (2023-07-01T04:44:43Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
本稿では,CGPと呼ばれるグラフの段階的プルーニングフレームワークを動的にGNNに提案する。
LTHに基づく手法とは異なり、提案手法では再学習を必要とせず、計算コストを大幅に削減する。
提案手法は,既存の手法の精度を一致させたり,あるいは超えたりしながら,トレーニングと推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-07-18T14:23:31Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
GNNを効率的に検索するためのARGNP(Automatic Relation-Aware Graph Network Proliferation)を提案する。
これらの操作は階層的なノード/リレーショナル情報を抽出し、グラフ上のメッセージパッシングのための異方的ガイダンスを提供する。
4つのグラフ学習タスクのための6つのデータセットの実験により、我々の手法によって生成されたGNNは、現在最先端の手作りおよび検索に基づくGNNよりも優れていることが示された。
論文 参考訳(メタデータ) (2022-05-31T10:38:04Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
グラフニューラルネットワーク(GNN)は、ノード機能を伝搬し、インタラクションを構築するためにメッセージパッシングパラダイムに依存している。
最近の研究は、異なるグラフ学習タスクはノード間の異なる範囲の相互作用を必要とすることを指摘している。
科学領域における2つの共通グラフ構築法、すなわち、emphK-nearest neighbor(KNN)グラフとemphfully-connected(FC)グラフについて検討する。
論文 参考訳(メタデータ) (2022-05-15T11:38:14Z) - Hierarchical graph neural nets can capture long-range interactions [8.067880298298185]
与えられたグラフの多重解像度表現を利用する階層的メッセージパッシングモデルについて検討する。
これにより、ローカル情報を失うことなく、大きな受容領域にまたがる特徴の学習が容易になる。
階層グラフネット(HGNet)を導入し、任意の2つの接続ノードに対して、最大対数長のメッセージパスパスが存在することを保証します。
論文 参考訳(メタデータ) (2021-07-15T16:24:22Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
本稿では,新しい階層型メッセージパッシンググラフニューラルネットワークフレームワークを提案する。
鍵となるアイデアは、フラットグラフ内のすべてのノードをマルチレベルなスーパーグラフに再編成する階層構造を生成することである。
階層型コミュニティ対応グラフニューラルネットワーク(HC-GNN)と呼ばれる,このフレームワークを実装した最初のモデルを提案する。
論文 参考訳(メタデータ) (2020-09-08T13:11:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。