論文の概要: Cross-system biological image quality enhancement based on the generative adversarial network as a foundation for establishing a multi-institute microscopy cooperative network
- arxiv url: http://arxiv.org/abs/2403.18026v1
- Date: Tue, 26 Mar 2024 18:23:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 21:24:43.309525
- Title: Cross-system biological image quality enhancement based on the generative adversarial network as a foundation for establishing a multi-institute microscopy cooperative network
- Title(参考訳): 多施設顕微鏡協調ネットワーク構築の基礎としての生成的対向ネットワークに基づくシステム間生物学的画質向上
- Authors: Dominik Panek, Carina Rząca, Maksymilian Szczypior, Joanna Sorysz, Krzysztof Misztal, Zbigniew Baster, Zenon Rajfur,
- Abstract要約: 生物学的システムの高品質蛍光イメージングは、光漂白や光毒性といったプロセスによって制限される。
本稿では,2つの異なる顕微鏡システム間のコントラスト伝達のためのGAN(Generative-Adversarial Network)を提案する。
このような転送が可能であることを実証し、低平均二乗誤差(MSE)、高構造類似度指数(SSIM)、高ピーク信号-雑音比(PSNR)を特徴とするHQ生成画像の受信を可能にする。
- 参考スコア(独自算出の注目度): 0.5235143203977018
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: High-quality fluorescence imaging of biological systems is limited by processes like photobleaching and phototoxicity, and also in many cases, by limited access to the latest generations of microscopes. Moreover, low temporal resolution can lead to a motion blur effect in living systems. Our work presents a deep learning (DL) generative-adversarial approach to the problem of obtaining high-quality (HQ) images based on their low-quality (LQ) equivalents. We propose a generative-adversarial network (GAN) for contrast transfer between two different separate microscopy systems: a confocal microscope (producing HQ images) and a wide-field fluorescence microscope (producing LQ images). Our model proves that such transfer is possible, allowing us to receive HQ-generated images characterized by low mean squared error (MSE) values, high structural similarity index (SSIM), and high peak signal-to-noise ratio (PSNR) values. For our best model in the case of comparing HQ-generated images and HQ-ground truth images, the median values of the metrics are 6x10-4, 0.9413, and 31.87, for MSE, SSIM, and PSNR, respectively. In contrast, in the case of comparison between LQ and HQ ground truth median values of the metrics are equal to 0.0071, 0.8304, and 21.48 for MSE, SSIM, and PSNR respectively. Therefore, we observe a significant increase ranging from 14% to 49% for SSIM and PSNR respectively. These results, together with other single-system cross-modality studies, provide proof of concept for further implementation of a cross-system biological image quality enhancement.
- Abstract(参考訳): 生物学的システムの高品質蛍光イメージングは、光漂白や光毒性などのプロセスによって制限され、多くの場合、最新の世代の顕微鏡へのアクセスが制限される。
さらに、低時間分解能は生体系における運動のぼかし効果をもたらす可能性がある。
本研究は,低品質 (LQ) の等価値に基づいて高品質 (HQ) 画像を得る問題に対する,ディープラーニング (DL) 生成的・敵対的アプローチを提案する。
共焦点顕微鏡(HQ画像)と広視野蛍光顕微鏡(LQ画像)の2つの異なる顕微鏡システム間のコントラスト伝達のためのGAN(generative-adversarial Network)を提案する。
我々のモデルでは、そのような転送が可能であることを証明し、低平均二乗誤差(MSE)、高構造類似度指数(SSIM)、高ピーク信号-雑音比(PSNR)を特徴とするHQ生成画像の受信を可能にする。
MSE,SSIM,PSNRはそれぞれ6x10-4,0.9413,31.87である。
対照的に、LQとHQの真理値の平均値はMSE、SSIM、PSNRそれぞれ0.0071、0.8304、21.48となる。
そこで,SSIMとPSNRでは,それぞれ14%から49%の顕著な増加が観察された。
これらの結果は、他の単系統のクロスモダリティ研究とともに、クロスシステム生物学的画像品質向上のさらなる実装のための概念実証を提供する。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Comparison of No-Reference Image Quality Models via MAP Estimation in
Diffusion Latents [99.19391983670569]
NR-IQAモデルは、画像強調のための最大後部推定(MAP)フレームワークにプラグイン可能であることを示す。
異なるNR-IQAモデルは異なる拡張イメージを誘導し、最終的には精神物理学的なテストを受ける。
これにより, NR-IQAモデルの比較を行う新たな計算手法が提案される。
論文 参考訳(メタデータ) (2024-03-11T03:35:41Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
胸部超音波(BUS)画像分類において,グローバルな文脈情報の収集が重要な役割を担っている。
ビジョントランスフォーマーは、グローバルなコンテキスト情報をキャプチャする能力が改善されているが、トークン化操作によって局所的なイメージパターンを歪めてしまう可能性がある。
本研究では,BUS腫瘍分類とセグメンテーションを行うハイブリッドマルチタスクディープニューラルネットワークであるHybrid-MT-ESTANを提案する。
論文 参考訳(メタデータ) (2023-08-04T01:19:32Z) - Evaluating the Quality and Diversity of DCGAN-based Generatively
Synthesized Diabetic Retinopathy Imagery [0.07499722271664144]
公的に利用可能な糖尿病網膜症(DR)データセットは不均衡であり、DRを持つ画像の数が限られている。
この不均衡に対処するには、GAN(Geneversarative Adrial Networks)を使用して、データセットを合成画像で拡張する。
合成画像の品質と多様性を評価するために、マルチスケール構造類似度指数(MS-SSIM)、コサイン距離(CD)、Fr't Inception Distance(FID)などの評価指標を用いる。
論文 参考訳(メタデータ) (2022-08-10T23:50:01Z) - Flow-based Visual Quality Enhancer for Super-resolution Magnetic
Resonance Spectroscopic Imaging [13.408365072149795]
超高解像度MRSIの視覚的品質を向上させるためのフローベースエンハンサーネットワークを提案する。
我々のエンハンサーネットワークは、追加画像モダリティ(MRI)から解剖情報を取り込み、学習可能なベース分布を使用する。
また,視覚的品質調整や不確実性推定も可能である。
論文 参考訳(メタデータ) (2022-07-20T20:19:44Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - Deep learning-based bias transfer for overcoming laboratory differences
of microscopic images [0.0]
免疫蛍光(IF)およびヘマトキシリンおよびエオシン(H&E)染色顕微鏡画像の領域シフトを克服するために,既存の生成モデルアーキテクチャを評価し,比較し,改良する。
前立腺生検では,ヒト腎糸球体およびポドサイトに対するピクセルレベルのセグメンテーションが有意に向上し,分類精度が最大14%向上した。
論文 参考訳(メタデータ) (2021-05-25T09:02:30Z) - Comparisons among different stochastic selection of activation layers
for convolutional neural networks for healthcare [77.99636165307996]
ニューラルネットワークのアンサンブルを用いて生体医用画像の分類を行う。
ReLU, leaky ReLU, Parametric ReLU, ELU, Adaptive Piecewice Linear Unit, S-Shaped ReLU, Swish, Mish, Mexican Linear Unit, Parametric Deformable Linear Unit, Soft Root Sign。
論文 参考訳(メタデータ) (2020-11-24T01:53:39Z) - Augmented Equivariant Attention Networks for Microscopy Image
Reconstruction [44.965820245167635]
高品質または高解像度の電子顕微鏡(EM)と蛍光顕微鏡(FM)の画像を取るのに時間がかかり、費用がかかる。
深層学習により、様々な種類の顕微鏡画像再構成のための画像から画像への変換タスクを実行できる。
本稿では,画像間の依存関係を捕捉する機能を持つ拡張同変アテンションネットワーク(AEANets)を提案する。
論文 参考訳(メタデータ) (2020-11-06T23:37:49Z) - Photoacoustic Microscopy with Sparse Data Enabled by Convolutional
Neural Networks for Fast Imaging [0.9786690381850356]
光音響顕微鏡(PAM)は近年,バイオメディカルイメージング技術として期待されている。
サンプリング密度の低減は、画像品質の犠牲となる画像取得時間を自然に短縮することができる。
本稿では,畳み込みニューラルネットワーク(CNN)を用いたスパースPAM画像の品質向上手法を提案する。
論文 参考訳(メタデータ) (2020-06-08T05:49:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。