論文の概要: Deep learning-based bias transfer for overcoming laboratory differences
of microscopic images
- arxiv url: http://arxiv.org/abs/2105.11765v1
- Date: Tue, 25 May 2021 09:02:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-26 23:07:03.924013
- Title: Deep learning-based bias transfer for overcoming laboratory differences
of microscopic images
- Title(参考訳): 深層学習に基づく顕微鏡画像の研究室差克服のためのバイアス伝達
- Authors: Ann-Katrin Thebille and Esther Dietrich and Martin Klaus and Lukas
Gernhold and Maximilian Lennartz and Christoph Kuppe and Rafael Kramann and
Tobias B. Huber and Guido Sauter and Victor G. Puelles and Marina Zimmermann
and Stefan Bonn
- Abstract要約: 免疫蛍光(IF)およびヘマトキシリンおよびエオシン(H&E)染色顕微鏡画像の領域シフトを克服するために,既存の生成モデルアーキテクチャを評価し,比較し,改良する。
前立腺生検では,ヒト腎糸球体およびポドサイトに対するピクセルレベルのセグメンテーションが有意に向上し,分類精度が最大14%向上した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The automated analysis of medical images is currently limited by technical
and biological noise and bias. The same source tissue can be represented by
vastly different images if the image acquisition or processing protocols vary.
For an image analysis pipeline, it is crucial to compensate such biases to
avoid misinterpretations. Here, we evaluate, compare, and improve existing
generative model architectures to overcome domain shifts for immunofluorescence
(IF) and Hematoxylin and Eosin (H&E) stained microscopy images. To determine
the performance of the generative models, the original and transformed images
were segmented or classified by deep neural networks that were trained only on
images of the target bias. In the scope of our analysis, U-Net cycleGANs
trained with an additional identity and an MS-SSIM-based loss and Fixed-Point
GANs trained with an additional structure loss led to the best results for the
IF and H&E stained samples, respectively. Adapting the bias of the samples
significantly improved the pixel-level segmentation for human kidney glomeruli
and podocytes and improved the classification accuracy for human prostate
biopsies by up to 14%.
- Abstract(参考訳): 医療画像の自動分析は現在、技術的および生物学的ノイズとバイアスによって制限されている。
画像取得または処理プロトコルが異なる場合、同じソース組織を非常に異なる画像で表現することができる。
画像解析パイプラインでは、誤解を避けるためにこのようなバイアスを補うことが不可欠である。
免疫蛍光(IF)およびヘマトキシリンおよびエオシン(H&E)染色顕微鏡画像の領域シフトを克服するために,既存の生成モデルアーキテクチャを評価し,比較し,改良する。
生成モデルの性能を決定するために、元の画像と変換された画像は、ターゲットバイアスの画像のみに基づいて訓練されたディープニューラルネットワークによって分割または分類された。
分析の範囲内では、追加のidとms-ssimベースの損失で訓練されたu-netサイクガンと追加の構造損失で訓練された固定点ganがそれぞれifとh&e染色試料の最良の結果をもたらした。
検体バイアスを順応させることで,ヒト腎糸球体およびポドサイトにおけるピクセルレベルセグメンテーションが大幅に改善され,ヒト前立腺生検の分類精度が最大14%向上した。
関連論文リスト
- On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - BioGAN: An unpaired GAN-based image to image translation model for
microbiological images [1.6427658855248812]
微生物画像のための画像翻訳モデルとして,未ペアのGAN(Generative Adversarial Network)画像を開発した。
本稿では,実験室で撮影された画像の高レベルな特徴をフィールド画像に変換するために,適応的・知覚的損失を利用したGANモデルBioGANの設計を提案する。
論文 参考訳(メタデータ) (2023-06-09T19:30:49Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
同様のレベルの遺伝子発現を持つ顕微鏡画像の領域を検出・分類するためのディープラーニングフレームワークを提案する。
分析するデータには教師なし学習モデルが必要です。
論文 参考訳(メタデータ) (2023-04-19T13:45:28Z) - Realistic Data Enrichment for Robust Image Segmentation in
Histopathology [2.248423960136122]
拡散モデルに基づく新しい手法を提案し、不均衡なデータセットを、表現不足なグループから有意な例で拡張する。
本手法は,限定的な臨床データセットを拡張して,機械学習パイプラインのトレーニングに適したものにする。
論文 参考訳(メタデータ) (2023-04-19T09:52:50Z) - Magnification Invariant Medical Image Analysis: A Comparison of
Convolutional Networks, Vision Transformers, and Token Mixers [2.3859625728972484]
畳み込みニューラルネットワーク(CNN)は医用画像解析に広く用いられている。
テスト画像の倍率がトレーニング画像と異なる場合、その性能は低下する。
本研究の目的は,様々なディープラーニングアーキテクチャの堅牢性を評価することである。
論文 参考訳(メタデータ) (2023-02-22T16:44:41Z) - Retinal Image Restoration and Vessel Segmentation using Modified
Cycle-CBAM and CBAM-UNet [0.7868449549351486]
畳み込みブロックアテンションモジュール(CBAM)を備えたサイクル一貫性生成対向ネットワーク(CycleGAN)を網膜画像復元に使用する。
修正されたUNetは、回復した網膜画像の網膜血管セグメンテーションに使用される。
提案手法は, アウト・オブ・フォーカスのぼかし, 色歪み, 低, 高, 不均一照明による劣化効果を著しく低減することができる。
論文 参考訳(メタデータ) (2022-09-09T10:47:20Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - StyPath: Style-Transfer Data Augmentation For Robust Histology Image
Classification [6.690876060631452]
我々は,StyPathに基づくAMR分類のための,堅牢なディープニューラルネットワークを構築するための新しいパイプラインを提案する。
それぞれの画像は、1GTX V TITANとpytorchを使って1.84 + 0.03秒で生成された。
以上の結果から,本手法は組織学的分類性能を向上させることが示唆された。
論文 参考訳(メタデータ) (2020-07-09T18:02:49Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
低画質の眼底画像は臨床観察における不確実性を高め、誤診のリスクを引き起こす。
本稿では,グローバルな劣化要因を抑えるために,臨床指向の基盤拡張ネットワーク(cofe-Net)を提案する。
合成画像と実画像の両方の実験により、我々のアルゴリズムは網膜の細部を失うことなく、低品質の眼底画像を効果的に補正することを示した。
論文 参考訳(メタデータ) (2020-05-12T08:01:16Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。