Deep polytopic autoencoders for low-dimensional linear parameter-varying approximations and nonlinear feedback design
- URL: http://arxiv.org/abs/2403.18044v2
- Date: Thu, 23 Jan 2025 02:28:53 GMT
- Title: Deep polytopic autoencoders for low-dimensional linear parameter-varying approximations and nonlinear feedback design
- Authors: Jan Heiland, Yongho Kim, Steffen W. R. Werner,
- Abstract summary: Polytopic autoencoders provide low-di-men-sion-al parametrizations of states in a polytope.<n>For nonlinear PDEs, this is readily applied to low-dimensional linear parameter-varying (LPV) approximations.
- Score: 0.9187159782788578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Polytopic autoencoders provide low-di\-men\-sion\-al parametrizations of states in a polytope. For nonlinear PDEs, this is readily applied to low-dimensional linear parameter-varying (LPV) approximations as they have been exploited for efficient nonlinear controller design via series expansions of the solution to the state-dependent Riccati equation. In this work, we develop a polytopic autoencoder for control applications and show how it improves on standard linear approaches in view of LPV approximations of nonlinear systems. We discuss how the particular architecture enables exact representation of target states and higher order series expansions of the nonlinear feedback law at little extra computational effort in the online phase and how the linear though high-dimensional and nonstandard Lyapunov equations are efficiently computed during the offline phase. In a numerical study, we illustrate the procedure and how this approach can reliably outperform the standard linear-quadratic regulator design.
Related papers
- Nonconvex Linear System Identification with Minimal State Representation [34.203983563629144]
Low-order linear System IDent (SysID) addresses the challenge of estimating the parameters of a linear dynamical system from finite samples of inputs with minimal state observations.
arXiv Detail & Related papers (2025-04-26T04:11:02Z) - Generalized Tensor-based Parameter-Efficient Fine-Tuning via Lie Group Transformations [50.010924231754856]
Adapting pre-trained foundation models for diverse downstream tasks is a core practice in artificial intelligence.
To overcome this, parameter-efficient fine-tuning (PEFT) methods like LoRA have emerged and are becoming a growing research focus.
We propose a generalization that extends matrix-based PEFT methods to higher-dimensional parameter spaces without compromising their structural properties.
arXiv Detail & Related papers (2025-04-01T14:36:45Z) - Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
Sequential Decision Making under Uncertainty (SDMU) is ubiquitous in many domains such as energy, finance, and supply chains.
Some SDMU are naturally modeled as Multistage Problems (MSPs) but the resulting optimizations are notoriously challenging from a computational standpoint.
This paper introduces a novel approach Two-Stage General Decision Rules (TS-GDR) to generalize the policy space beyond linear functions.
The effectiveness of TS-GDR is demonstrated through an instantiation using Deep Recurrent Neural Networks named Two-Stage Deep Decision Rules (TS-LDR)
arXiv Detail & Related papers (2024-05-23T18:19:47Z) - Estimation Sample Complexity of a Class of Nonlinear Continuous-time Systems [0.0]
We present a method of parameter estimation for large class of nonlinear systems, namely those in which the state consists of output derivatives and the flow is linear in the parameter.
The method, which solves for the unknown parameter by directly inverting the dynamics using regularized linear regression, is based on new design and analysis ideas for differentiation filtering and regularized least squares.
arXiv Detail & Related papers (2023-12-08T21:42:11Z) - Pessimistic Nonlinear Least-Squares Value Iteration for Offline Reinforcement Learning [53.97335841137496]
We propose an oracle-efficient algorithm, dubbed Pessimistic Least-Square Value Iteration (PNLSVI) for offline RL with non-linear function approximation.
Our algorithm enjoys a regret bound that has a tight dependency on the function class complexity and achieves minimax optimal instance-dependent regret when specialized to linear function approximation.
arXiv Detail & Related papers (2023-10-02T17:42:01Z) - Provably Efficient Algorithm for Nonstationary Low-Rank MDPs [48.92657638730582]
We make the first effort to investigate nonstationary RL under episodic low-rank MDPs, where both transition kernels and rewards may vary over time.
We propose a parameter-dependent policy optimization algorithm called PORTAL, and further improve PORTAL to its parameter-free version of Ada-PORTAL.
For both algorithms, we provide upper bounds on the average dynamic suboptimality gap, which show that as long as the nonstationarity is not significantly large, PORTAL and Ada-PORTAL are sample-efficient and can achieve arbitrarily small average dynamic suboptimality gap with sample complexity.
arXiv Detail & Related papers (2023-08-10T09:52:44Z) - Convolutional Autoencoders, Clustering and POD for Low-dimensional
Parametrization of Navier-Stokes Equations [1.160208922584163]
We propose a convolutional autoencoder (CAE) consisting of a nonlinear encoder and an affine linear decoder.
The proposed set of methods is compared to the standard POD approach in two cylinder-wake scenarios modeled by the incompressible Navier-Stokes equations.
arXiv Detail & Related papers (2023-02-02T18:12:08Z) - Linear Convergence of Natural Policy Gradient Methods with Log-Linear
Policies [115.86431674214282]
We consider infinite-horizon discounted Markov decision processes and study the convergence rates of the natural policy gradient (NPG) and the Q-NPG methods with the log-linear policy class.
We show that both methods attain linear convergence rates and $mathcalO (1/epsilon2)$ sample complexities using a simple, non-adaptive geometrically increasing step size.
arXiv Detail & Related papers (2022-10-04T06:17:52Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Non-intrusive Nonlinear Model Reduction via Machine Learning
Approximations to Low-dimensional Operators [0.0]
We propose a method that enables traditionally intrusive reduced-order models to be accurately approximated in a non-intrusive manner.
The approach approximates the low-dimensional operators associated with projection-based reduced-order models (ROMs) using modern machine-learning regression techniques.
In addition to enabling nonintrusivity, we demonstrate that the approach also leads to very low computational complexity, achieving up to $1000times$ reduction in run time.
arXiv Detail & Related papers (2021-06-17T17:04:42Z) - Sample-Efficient Reinforcement Learning Is Feasible for Linearly
Realizable MDPs with Limited Revisiting [60.98700344526674]
Low-complexity models such as linear function representation play a pivotal role in enabling sample-efficient reinforcement learning.
In this paper, we investigate a new sampling protocol, which draws samples in an online/exploratory fashion but allows one to backtrack and revisit previous states in a controlled and infrequent manner.
We develop an algorithm tailored to this setting, achieving a sample complexity that scales practicallyly with the feature dimension, the horizon, and the inverse sub-optimality gap, but not the size of the state/action space.
arXiv Detail & Related papers (2021-05-17T17:22:07Z) - POD-DL-ROM: enhancing deep learning-based reduced order models for
nonlinear parametrized PDEs by proper orthogonal decomposition [0.0]
Deep learning-based reduced order models (DL-ROMs) have been recently proposed to overcome common limitations shared by conventional reduced order models (ROMs)
In this paper we propose a possible way to avoid an expensive training stage of DL-ROMs, by (i) performing a prior dimensionality reduction through POD, and (ii) relying on a multi-fidelity pretraining stage.
The proposed POD-DL-ROM is tested on several (both scalar and vector, linear and nonlinear) time-dependent parametrized PDEs.
arXiv Detail & Related papers (2021-01-28T07:34:15Z) - LQF: Linear Quadratic Fine-Tuning [114.3840147070712]
We present the first method for linearizing a pre-trained model that achieves comparable performance to non-linear fine-tuning.
LQF consists of simple modifications to the architecture, loss function and optimization typically used for classification.
arXiv Detail & Related papers (2020-12-21T06:40:20Z) - Linear embedding of nonlinear dynamical systems and prospects for
efficient quantum algorithms [74.17312533172291]
We describe a method for mapping any finite nonlinear dynamical system to an infinite linear dynamical system (embedding)
We then explore an approach for approximating the resulting infinite linear system with finite linear systems (truncation)
arXiv Detail & Related papers (2020-12-12T00:01:10Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
We propose a novel optimization backbone for visual SLAM systems.
We leverage averaging to improve the accuracy, efficiency and robustness of conventional monocular SLAM systems.
Our approach can exhibit up to 10x faster with comparable accuracy against the state-art on public benchmarks.
arXiv Detail & Related papers (2020-11-02T18:02:26Z) - Loss landscapes and optimization in over-parameterized non-linear
systems and neural networks [20.44438519046223]
We show that wide neural networks satisfy the PL$*$ condition, which explains the (S)GD convergence to a global minimum.
We show that wide neural networks satisfy the PL$*$ condition, which explains the (S)GD convergence to a global minimum.
arXiv Detail & Related papers (2020-02-29T17:18:28Z) - A comprehensive deep learning-based approach to reduced order modeling
of nonlinear time-dependent parametrized PDEs [0.0]
We show how to construct a DL-ROM for both linear and nonlinear time-dependent parametrized PDEs.
Numerical results indicate that DL-ROMs whose dimension is equal to the intrinsic dimensionality of the PDE solutions manifold are able to approximate the solution of parametrized PDEs.
arXiv Detail & Related papers (2020-01-12T21:18:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.