QuakeSet: A Dataset and Low-Resource Models to Monitor Earthquakes through Sentinel-1
- URL: http://arxiv.org/abs/2403.18116v1
- Date: Tue, 26 Mar 2024 21:45:29 GMT
- Title: QuakeSet: A Dataset and Low-Resource Models to Monitor Earthquakes through Sentinel-1
- Authors: Daniele Rege Cambrin, Paolo Garza,
- Abstract summary: We propose a new dataset composed of images taken from Sentinel-1 to help monitor earthquakes from a new detailed view.
We provide a series of traditional machine learning and deep learning models as baselines to assess the effectiveness of ML-based models in earthquake analysis.
- Score: 5.279257531335345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Earthquake monitoring is necessary to promptly identify the affected areas, the severity of the events, and, finally, to estimate damages and plan the actions needed for the restoration process. The use of seismic stations to monitor the strength and origin of earthquakes is limited when dealing with remote areas (we cannot have global capillary coverage). Identification and analysis of all affected areas is mandatory to support areas not monitored by traditional stations. Using social media images in crisis management has proven effective in various situations. However, they are still limited by the possibility of using communication infrastructures in case of an earthquake and by the presence of people in the area. Moreover, social media images and messages cannot be used to estimate the actual severity of earthquakes and their characteristics effectively. The employment of satellites to monitor changes around the globe grants the possibility of exploiting instrumentation that is not limited by the visible spectrum, the presence of land infrastructures, and people in the affected areas. In this work, we propose a new dataset composed of images taken from Sentinel-1 and a new series of tasks to help monitor earthquakes from a new detailed view. Coupled with the data, we provide a series of traditional machine learning and deep learning models as baselines to assess the effectiveness of ML-based models in earthquake analysis.
Related papers
- Estimating Earthquake Magnitude in Sentinel-1 Imagery via Ranking [5.71478837100808]
We propose to pose the estimation of earthquake magnitudes as a metric-learning problem.
We train models to estimate earthquake magnitude from Sentinel-1 satellite imagery and to additionally rank pairwise samples.
Our experiments show at max a 30%+ improvement in MAE over prior regression-only based methods.
arXiv Detail & Related papers (2024-07-25T15:35:44Z) - Learning Physics for Unveiling Hidden Earthquake Ground Motions via Conditional Generative Modeling [43.056135090637646]
Conditional Generative Modeling for Ground Motion (CGM-GM)
We propose a novel artificial intelligence (AI) simulator to synthesize high-frequency and spatially continuous earthquake ground motion waveforms.
CGM-GM demonstrates a strong potential for outperforming a state-of-the-art non-ergodic empirical ground motion model.
arXiv Detail & Related papers (2024-07-21T08:23:37Z) - Generalizable Disaster Damage Assessment via Change Detection with Vision Foundation Model [17.016411785224317]
We present DAVI (Disaster Assessment with VIsion foundation model), which overcomes domain disparities and detects structural damage without requiring ground-truth labels of the target region.
DAVI integrates task-specific knowledge from a model trained on source regions with an image segmentation foundation model to generate pseudo labels of possible damage in the target region.
It then employs a two-stage refinement process, targeting both the pixel and overall image, to more accurately pinpoint changes in disaster-struck areas.
arXiv Detail & Related papers (2024-06-12T09:21:28Z) - Generalized Neural Networks for Real-Time Earthquake Early Warning [22.53592578343506]
We employ a data recombination method to create earthquakes occurring at any location with arbitrary station distributions for neural network training.
The trained models can then be applied to various regions with different monitoring setups for earthquake detection and parameter evaluation.
Our models reliably report earthquake locations and magnitudes within 4 seconds after the first triggered station, with mean errors of 2.6-6.3 km and 0.05-0.17, respectively.
arXiv Detail & Related papers (2023-12-23T10:45:21Z) - Multi-task multi-station earthquake monitoring: An all-in-one seismic
Phase picking, Location, and Association Network (PLAN) [19.697978881402143]
A standard monitoring workflow includes the interrelated and interdependent tasks of phase picking, association, and location.
Here, we propose a graph neural network that operates directly on multi-station seismic data and achieves simultaneous phase picking, association, and location.
arXiv Detail & Related papers (2023-06-24T09:46:18Z) - Classification of structural building damage grades from multi-temporal
photogrammetric point clouds using a machine learning model trained on
virtual laser scanning data [58.720142291102135]
We present a novel approach to automatically assess multi-class building damage from real-world point clouds.
We use a machine learning model trained on virtual laser scanning (VLS) data.
The model yields high multi-target classification accuracies (overall accuracy: 92.0% - 95.1%)
arXiv Detail & Related papers (2023-02-24T12:04:46Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
We present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias.
We envision how such a model may facilitate cooperation between members of the community.
arXiv Detail & Related papers (2022-11-04T09:58:57Z) - Detecting Damage Building Using Real-time Crowdsourced Images and
Transfer Learning [53.26496452886417]
This paper presents an automated way to extract the damaged building images after earthquakes from social media platforms such as Twitter.
Using transfer learning and 6500 manually labelled images, we trained a deep learning model to recognize images with damaged buildings in the scene.
The trained model achieved good performance when tested on newly acquired images of earthquakes at different locations and ran in near real-time on Twitter feed after the 2020 M7.0 earthquake in Turkey.
arXiv Detail & Related papers (2021-10-12T06:31:54Z) - Towards advancing the earthquake forecasting by machine learning of
satellite data [22.87513332935679]
We develop a novel machine learning method, namely Inverse Boosting Pruning Trees (IBPT), to issue short-term forecast based on the satellite data of 1,371 earthquakes of magnitude six or above.
Our proposed method outperforms all the six selected baselines and shows a strong capability in improving the likelihood of earthquake forecasting across different earthquake databases.
arXiv Detail & Related papers (2021-01-31T02:29:48Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
Building damage detection can be automated by applying computer vision techniques to satellite imagery.
Models must be robust to a shift in distribution between disaster imagery available for training and the images of the new event.
We argue that future work should focus on the OOD regime instead.
arXiv Detail & Related papers (2020-11-20T10:30:43Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNet is a unified model that can simultaneously segment buildings and assess the damage levels to individual buildings and can be trained end-to-end.
RescueNet is tested on the large scale and diverse xBD dataset and achieves significantly better building segmentation and damage classification performance than previous methods.
arXiv Detail & Related papers (2020-04-15T19:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.