Estimating Earthquake Magnitude in Sentinel-1 Imagery via Ranking
- URL: http://arxiv.org/abs/2407.18128v2
- Date: Wed, 31 Jul 2024 21:20:48 GMT
- Title: Estimating Earthquake Magnitude in Sentinel-1 Imagery via Ranking
- Authors: Daniele Rege Cambrin, Isaac Corley, Paolo Garza, Peyman Najafirad,
- Abstract summary: We propose to pose the estimation of earthquake magnitudes as a metric-learning problem.
We train models to estimate earthquake magnitude from Sentinel-1 satellite imagery and to additionally rank pairwise samples.
Our experiments show at max a 30%+ improvement in MAE over prior regression-only based methods.
- Score: 5.71478837100808
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Earthquakes are commonly estimated using physical seismic stations, however, due to the installation requirements and costs of these stations, global coverage quickly becomes impractical. An efficient and lower-cost alternative is to develop machine learning models to globally monitor earth observation data to pinpoint regions impacted by these natural disasters. However, due to the small amount of historically recorded earthquakes, this becomes a low-data regime problem requiring algorithmic improvements to achieve peak performance when learning to regress earthquake magnitude. In this paper, we propose to pose the estimation of earthquake magnitudes as a metric-learning problem, training models to not only estimate earthquake magnitude from Sentinel-1 satellite imagery but to additionally rank pairwise samples. Our experiments show at max a 30%+ improvement in MAE over prior regression-only based methods, particularly transformer-based architectures.
Related papers
- Fast Information Streaming Handler (FisH): A Unified Seismic Neural Network for Single Station Real-Time Earthquake Early Warning [56.45067876391473]
Existing EEW approaches treat phase picking, location estimation, and magnitude estimation as separate tasks, lacking a unified framework.
We propose a novel unified seismic neural network called Fast Information Streaming Handler (FisH)
FisH is designed to process real-time streaming seismic data and generate simultaneous results for phase picking, location estimation, and magnitude estimation in an end-to-end fashion.
arXiv Detail & Related papers (2024-08-13T04:33:23Z) - Learning Physics for Unveiling Hidden Earthquake Ground Motions via Conditional Generative Modeling [43.056135090637646]
Conditional Generative Modeling for Ground Motion (CGM-GM)
We propose a novel artificial intelligence (AI) simulator to synthesize high-frequency and spatially continuous earthquake ground motion waveforms.
CGM-GM demonstrates a strong potential for outperforming a state-of-the-art non-ergodic empirical ground motion model.
arXiv Detail & Related papers (2024-07-21T08:23:37Z) - QuakeSet: A Dataset and Low-Resource Models to Monitor Earthquakes through Sentinel-1 [5.279257531335345]
We propose a new dataset composed of images taken from Sentinel-1 to help monitor earthquakes from a new detailed view.
We provide a series of traditional machine learning and deep learning models as baselines to assess the effectiveness of ML-based models in earthquake analysis.
arXiv Detail & Related papers (2024-03-26T21:45:29Z) - Data-Driven Prediction of Seismic Intensity Distributions Featuring
Hybrid Classification-Regression Models [21.327960186900885]
This study develops linear regression models capable of predicting seismic intensity distributions based on earthquake parameters.
The dataset comprises seismic intensity data from earthquakes that occurred in the vicinity of Japan between 1997 and 2020.
The proposed model can predict even abnormal seismic intensity distributions, a task at conventional GMPEs often struggle.
arXiv Detail & Related papers (2024-02-03T13:39:22Z) - Generalized Neural Networks for Real-Time Earthquake Early Warning [22.53592578343506]
We employ a data recombination method to create earthquakes occurring at any location with arbitrary station distributions for neural network training.
The trained models can then be applied to various regions with different monitoring setups for earthquake detection and parameter evaluation.
Our models reliably report earthquake locations and magnitudes within 4 seconds after the first triggered station, with mean errors of 2.6-6.3 km and 0.05-0.17, respectively.
arXiv Detail & Related papers (2023-12-23T10:45:21Z) - Classification of structural building damage grades from multi-temporal
photogrammetric point clouds using a machine learning model trained on
virtual laser scanning data [58.720142291102135]
We present a novel approach to automatically assess multi-class building damage from real-world point clouds.
We use a machine learning model trained on virtual laser scanning (VLS) data.
The model yields high multi-target classification accuracies (overall accuracy: 92.0% - 95.1%)
arXiv Detail & Related papers (2023-02-24T12:04:46Z) - A CNN-BiLSTM Model with Attention Mechanism for Earthquake Prediction [0.0]
This paper proposes a novel prediction method based on attention mechanism (AM), convolution neural network (CNN), and bi-directional long short-term memory (BiLSTM) models.
It can predict the number and maximum magnitude of earthquakes in each area of mainland China-based on the earthquake catalog of the region.
arXiv Detail & Related papers (2021-12-26T20:16:20Z) - Detecting Damage Building Using Real-time Crowdsourced Images and
Transfer Learning [53.26496452886417]
This paper presents an automated way to extract the damaged building images after earthquakes from social media platforms such as Twitter.
Using transfer learning and 6500 manually labelled images, we trained a deep learning model to recognize images with damaged buildings in the scene.
The trained model achieved good performance when tested on newly acquired images of earthquakes at different locations and ran in near real-time on Twitter feed after the 2020 M7.0 earthquake in Turkey.
arXiv Detail & Related papers (2021-10-12T06:31:54Z) - Towards advancing the earthquake forecasting by machine learning of
satellite data [22.87513332935679]
We develop a novel machine learning method, namely Inverse Boosting Pruning Trees (IBPT), to issue short-term forecast based on the satellite data of 1,371 earthquakes of magnitude six or above.
Our proposed method outperforms all the six selected baselines and shows a strong capability in improving the likelihood of earthquake forecasting across different earthquake databases.
arXiv Detail & Related papers (2021-01-31T02:29:48Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
Building damage detection can be automated by applying computer vision techniques to satellite imagery.
Models must be robust to a shift in distribution between disaster imagery available for training and the images of the new event.
We argue that future work should focus on the OOD regime instead.
arXiv Detail & Related papers (2020-11-20T10:30:43Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNet is a unified model that can simultaneously segment buildings and assess the damage levels to individual buildings and can be trained end-to-end.
RescueNet is tested on the large scale and diverse xBD dataset and achieves significantly better building segmentation and damage classification performance than previous methods.
arXiv Detail & Related papers (2020-04-15T19:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.