Learning Physics for Unveiling Hidden Earthquake Ground Motions via Conditional Generative Modeling
- URL: http://arxiv.org/abs/2407.15089v1
- Date: Sun, 21 Jul 2024 08:23:37 GMT
- Title: Learning Physics for Unveiling Hidden Earthquake Ground Motions via Conditional Generative Modeling
- Authors: Pu Ren, Rie Nakata, Maxime Lacour, Ilan Naiman, Nori Nakata, Jialin Song, Zhengfa Bi, Osman Asif Malik, Dmitriy Morozov, Omri Azencot, N. Benjamin Erichson, Michael W. Mahoney,
- Abstract summary: Conditional Generative Modeling for Ground Motion (CGM-GM)
We propose a novel artificial intelligence (AI) simulator to synthesize high-frequency and spatially continuous earthquake ground motion waveforms.
CGM-GM demonstrates a strong potential for outperforming a state-of-the-art non-ergodic empirical ground motion model.
- Score: 43.056135090637646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting high-fidelity ground motions for future earthquakes is crucial for seismic hazard assessment and infrastructure resilience. Conventional empirical simulations suffer from sparse sensor distribution and geographically localized earthquake locations, while physics-based methods are computationally intensive and require accurate representations of Earth structures and earthquake sources. We propose a novel artificial intelligence (AI) simulator, Conditional Generative Modeling for Ground Motion (CGM-GM), to synthesize high-frequency and spatially continuous earthquake ground motion waveforms. CGM-GM leverages earthquake magnitudes and geographic coordinates of earthquakes and sensors as inputs, learning complex wave physics and Earth heterogeneities, without explicit physics constraints. This is achieved through a probabilistic autoencoder that captures latent distributions in the time-frequency domain and variational sequential models for prior and posterior distributions. We evaluate the performance of CGM-GM using small-magnitude earthquake records from the San Francisco Bay Area, a region with high seismic risks. CGM-GM demonstrates a strong potential for outperforming a state-of-the-art non-ergodic empirical ground motion model and shows great promise in seismology and beyond.
Related papers
- High Resolution Seismic Waveform Generation using Denoising Diffusion [3.5046784866523932]
This study introduces a novel, efficient, and scalable generative model for high-frequency seismic waveform generation.
A spectrogram representation of seismic waveform data is reduced to a lower-dimensional submanifold via an autoencoder.
A state-of-the-art diffusion model is trained to generate this latent representation, conditioned on key input parameters.
arXiv Detail & Related papers (2024-10-25T07:01:48Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Estimating Earthquake Magnitude in Sentinel-1 Imagery via Ranking [5.71478837100808]
We propose to pose the estimation of earthquake magnitudes as a metric-learning problem.
We train models to estimate earthquake magnitude from Sentinel-1 satellite imagery and to additionally rank pairwise samples.
Our experiments show at max a 30%+ improvement in MAE over prior regression-only based methods.
arXiv Detail & Related papers (2024-07-25T15:35:44Z) - Data-Driven Prediction of Seismic Intensity Distributions Featuring
Hybrid Classification-Regression Models [21.327960186900885]
This study develops linear regression models capable of predicting seismic intensity distributions based on earthquake parameters.
The dataset comprises seismic intensity data from earthquakes that occurred in the vicinity of Japan between 1997 and 2020.
The proposed model can predict even abnormal seismic intensity distributions, a task at conventional GMPEs often struggle.
arXiv Detail & Related papers (2024-02-03T13:39:22Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Predictive World Models from Real-World Partial Observations [66.80340484148931]
We present a framework for learning a probabilistic predictive world model for real-world road environments.
While prior methods require complete states as ground truth for learning, we present a novel sequential training method to allow HVAEs to learn to predict complete states from partially observed states only.
arXiv Detail & Related papers (2023-01-12T02:07:26Z) - Spreading of a local excitation in a Quantum Hierarchical Model [62.997667081978825]
We study the dynamics of the quantum Dyson hierarchical model in its paramagnetic phase.
An initial state made by a local excitation of the paramagnetic ground state is considered.
A localization mechanism is found and the excitation remains close to its initial position at arbitrary times.
arXiv Detail & Related papers (2022-07-14T10:05:20Z) - A CNN-BiLSTM Model with Attention Mechanism for Earthquake Prediction [0.0]
This paper proposes a novel prediction method based on attention mechanism (AM), convolution neural network (CNN), and bi-directional long short-term memory (BiLSTM) models.
It can predict the number and maximum magnitude of earthquakes in each area of mainland China-based on the earthquake catalog of the region.
arXiv Detail & Related papers (2021-12-26T20:16:20Z) - Towards advancing the earthquake forecasting by machine learning of
satellite data [22.87513332935679]
We develop a novel machine learning method, namely Inverse Boosting Pruning Trees (IBPT), to issue short-term forecast based on the satellite data of 1,371 earthquakes of magnitude six or above.
Our proposed method outperforms all the six selected baselines and shows a strong capability in improving the likelihood of earthquake forecasting across different earthquake databases.
arXiv Detail & Related papers (2021-01-31T02:29:48Z) - Semiparametric Bayesian Forecasting of Spatial Earthquake Occurrences [77.68028443709338]
We propose a fully Bayesian formulation of the Epidemic Type Aftershock Sequence (ETAS) model.
The occurrence of the mainshock earthquakes in a geographical region is assumed to follow an inhomogeneous spatial point process.
arXiv Detail & Related papers (2020-02-05T10:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.